CPM-50U2.311 MULIIFUYGIOOU POWER METER

DESCRIPTION

The CPM series Multifunction Power Meter provide high accuracy measurement, display and communication(Modbus RTU) of all electrical and power quality parameters, including harmonic measurement up to $31^{\text {st }}$ THD (Total Harmonic distortion) or Individual harmonic. By using of large screen high density LCD with white backlight, the display can be easily read in the dim or under sunshine environment.

There are two digital input in standard and the option I/O module can be specify to provide extra 2 DIs, DI Auxiliary Power, 2 DOs and 2 Relay Outputs. Each I/O can be user programmed in functions such as remote monitoring switches status, output to represent energy, alarming and so on.

- FEATURE

- Programmable to measure 1P2W, 1P3W, 3P3W, 3P4W system and PT and CT ratio capability.
- True rms measurement with high accuracy for V/A: 0.2% and Power/Energy: 0.5% (4 quadrants)
- Low profile: DIN 96X96 with 63mm depth(with I/O module)
- A large high-contrast LCD display with white backlight allows the simultaneous reading of 5 parameters and their symbols with high visibility digits.

Electric Automation SCADA System

CPM can be used to replace all traditional electric meters. It also can be used as Remote Terminal Unit (RTU) for monitoring and controlling in a SCADA system. All the measured data is available via RS485 communication ports running the Mobus ${ }^{\text {TM }}$ protocol.

Remote Power Control

The main function of CPM is measurement, but it has also got some flexible I/O functions. This made the meter can be used as distributed RTU(metering, monitoring, remote controlling in one unit).

Power Quality Analysis

It can simultaneously and continuously give out the analysis results such as THD of voltage and current, harmonics up to 31st and unbalance factor of voltage and current, etc.

Energy Management

CPM can measure bi-directions four quadrants kWh and kvarh with accuracy up to 0.5%. It can provide high standard energy data and energy demand data. All these data is important for statistics for each line feeder and total.
Building automation for Mutifunction Power Meters, Temperature, Humidity and Pressure

DEFINE AND EXPLAN OF METERING OR READING

- Voltage (U): True RMS value of three phase voltages, three line to line voltages and their average are measured.
- Current (I): True RMS value of three phase currents, neutral current and their average are measured.
- Power (P): Three phase power and system total power are measured.
- Reactive power (Q): Three phase reactive power and system total reactive power are measured.
- Apparent power (S): Three phase apparent power and system total apparent power are measured.
- Frequency (F): The frequency of U1 phase voltage input is measured as system frequency.
- Active Energy (kWh): Active energy is time integral of active power. The unit is kWh. As power has direction, positive means consumption and negative means generating. So the energy has also the nature of consumption or generating.
> Import (imp): Consumption energy
> Export (exp): Generating energy
> Total: Absolute sum of import and export energy.
> Net: Absolute subtractions of import and export energy.
- Reactive power: Reactive energy is time integral of reactive power. The unit is kvarh. As reactive power has direction, positive means inductive and negative means capacitive, so the reactive energy has also got the nature of inductive and capacitive.
> Import (imp): Inductive reactive energy.
> Export (exp): Capacitive reactive energy.
> Total: Absolute sum of import and export reactive energy.
> Net: Absolute substration of import and export reactive energy. Each of the four reactive energies is measured and stored independently.
- Demand: Demand of active power, reactive power and apparent power. The demand statistics method in CPM-50 is sliding window. The sliding window time can be chose between 1 to 30 Minutes. The window slides one Minute each time. For example, the sliding window time is supposed to be 3 Minutes. If average power of the first Minute is 12 , average power of the second Minute is 14 and average power of the third Minute is 10 , then the total demand of the 3 minutes is $(12+14+10) / 3=12$ at the end of the three Minute. If another Minute passed, the average power of the Minute is 8 , then the total power demand of the last three Minutes is $(14+10+8) / 3=10$ at the end of the fourth Minute. The function of demand only exists in CPM-52.
- Crest factor (CF): The crest factor is used to express the distortion of waveform. This is an important factor to scale the influence to the system insulation. The expression is as following:

$$
C F=1.414 \sum_{h=1}^{50} \frac{U h}{U 1}
$$

In the expression, U1 is the RMS of fundamental and Uh is the RMS of the hth harmonic. The function of Crest factor only exists in CPM-52.

- Total harmonic distortion: This factor is often used to express the power quality of the electric power system. The expression is as following,

$$
T H D=\sqrt{\sum_{h=2}^{50}\left(\frac{U h}{U \mathrm{I}}\right)^{2}} \times 100 \%
$$

In the expression, U1 is the RMS of fundamental and Uh is the RMS of the hth harmonic.
Each harmonic rate: The percentage of each harmonic divided by fundamental.

$$
H R U h=\frac{U h}{U 1} \times 100 \% \quad H R I h=\frac{I h}{I l} \times 100 \%
$$

- Total Even harmonics distortion: Root of the sum of each even harmonics square.
- Total Odd harmonics distortion: Root of the sum of each odd harmonics square.
- Telephone Interference Factor (THFF): The interference factor to telephone communication system. The expression of the THFF is as following,

$$
\text { THFF }=\sqrt{\sum_{h=1}^{100}\left(\frac{50 \times h \times P h \times U h}{800 \times 1000 \times U 1}\right)^{2}} \times 100 \%
$$

In the expression, the Uh is the voltage of the hth harmonic and the Ph is coefficient which is defined by CCITT committee.
The function of the THFF exists in CPM-52.

- K factor: This is an important factor to scale the power quality of current.

$$
K \text { factor }=\frac{\sum_{n=1}^{k}(n \times F n)^{2}}{\sum_{n=1}^{k}(F n)^{2}}
$$

In the expression, the Fn is the RMS of the nth harmonic.

- Three phase unbalance factor: three phase voltage unbalance factor and three phase current unbalance factor can be measured. The unbalance factor is express in percentage.
Voltage unbalance factor $=\frac{\text { The Max different value of three voltages }}{\text { Average value of three voltages }}$
Current unbalance factor $=\frac{\text { The Max different value of the three currents }}{\text { Average value of three currents }}$
- Max/Min statistics: The maximum and minimum value of the metering data is stored in NV-RAM and can be accessed or cleared from front panel or through communication in CPM-50. These metering data are phase voltage, line to line voltage, current, power, reactive power, apparent power, power factor, frequency, demand.
- Real time clock: There is a real time clock in the CPM-50. The date, month, year, hour, minute and second can be read or set from front panel or through communication.
- Phase Angle different: the phase angle difference gives the phase angle relationship between the voltage and current. It is from 0 to 360°. When the wiring of voltage input is set to be 2LL, it gives the phase difference U23, i1, i2
and i3relative to U12. When the wiring of voltage input is set to be 2 LN and 3 LN , it gives the phase difference $\mathrm{U} 2, \mathrm{U} 3, \mathrm{i} 1, \mathrm{i} 2$, i 3 relative to U1.
- Over limit alarming: In CPM-50, when the metering data is over the pre-setting limit and over pre-setting time interval, the over limit alarming will be picked up. The over limit value and time will be recorded and the maximum number of records is 9 . The digital output (DO) can be used as trigger to light or sound alarming. There can be maximum 9 in equations related to the over limit alarming. Any satisfaction of the in equations will trigger the over limit alarming. Any one of the 9 equations can be assigned to one of the digital output (DO). An example is given in the following to describe how the first in equation is being set and determined.
Remark: The related registers should be pre-set in order to finish the above process, and the registers are pre-set through communication.
In equation enable register: register EN_INEQU, bit0~bit8 corresponding to 1 to 9 inequation.
$\operatorname{Bit}(\mathrm{n})=0 \quad$ forbid the nth inequation.
$\operatorname{Bit}(n)=1 \quad$ enable the nth inequation.
The 9 variables (var1 to var9) can be any of the 34 parameters.
Table 3.1

Number	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Parameter	F	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{\text {Inavg }}$	V_{12}	$\mathrm{~V}_{23}$	$\mathrm{~V}_{31}$	$\mathrm{~V}_{\text {Ilavg }}$
Number	$\mathbf{9}$	10	11	12	13	14	15	16	17
Parameter	I_{1}	I_{2}	I_{3}	$\mathrm{I}_{\text {avg }}$	I_{n}	P_{1}	P_{2}	P_{3}	$\mathrm{P}_{\text {sum }}$
Number	18	19	$\mathbf{2 0}$	21	22	23	24	25	26
Parameter	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{\text {sum }}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{\text {sum }}$	PF_{1}
Number	27	28	29	30	31	32	33	34	
Parameter	PF_{2}	PF_{3}	PF	$\mathrm{U}_{\text {unbl }}$	$\mathrm{I}_{\text {unbl }}$	P_{d}	Q_{d}	S_{d}	

Limit setting register: register Ref1 to Ref9
The setting of the Ref register should be the up limit or the low limit of the parameter. The range of the parameter limit is related to the format of the register.
Time limit setting register: register Limit_t Limit_t is the time interval limit. It is an integer from 0 to 255 . One digit is 300 ms . Zero means no time limit. Trigger the record and alarming output immediately on the over limitation. All the inequations have the same time limit.
If the Limit_t=20,
the time limitation is $20 \times 300=6000 \mathrm{~ms}$.
Inequation sign register: INEQU_Sign1 to INEQU_Sign9.
INEQU_Sign=0, select <, the low limit
INEQU_Sign=1, select >, the up limit
The DO select register:
Associated DO1 register bit0~bit8 correspond to the first to ninth inequation.
$\operatorname{Bit}(\mathrm{n})=0$, DO1 do not associate with the nth inequation
$\operatorname{Bit}(\mathrm{n})=1, \mathrm{DO1}$ associate with the nth inequation Associated DO2 register bit0~bit8 correspond to the first to ninth inequation.
$\operatorname{Bit}(n)=0$, DO2 do not associate with the nth inequation
$\operatorname{Bit}(\mathrm{n})=1, \mathrm{DO} 2$ associate with the nth inequation Example: If current I_{1} goes over the high limit and time interval limit 15 Seconds, trigger the over limit alarm record and DO1 output. The CT ratio of the current I_{1} is 200/5. The High limit of current I_{1} is set to be 180A. The setting of the registers is as following,
Enable the inequation1: EN_INEQU register bit(0)=1
The current I_{1} is number 9 in Table 3.1 The setting of the Var1 is 9 .
The relation of real current and the data stored in register is,
Real current=(data in registerxCT1/5)/1000
The CT1 is 200 and high limit of current is 180A, then the data in register is 4500 . The setting of the Ref1 is 4500.
Time limit is 15 Seconds and the one digit is 300 ms , then the setting of Limit t 1 is 50 .
As it is the high limit, the INQU_Sign1 should be 1 .
Use DO1 as alarm signal output, then the bit0 of the associated DO1 should be 1.
Only recent 9 groups of the alarming record can be stored in memory of CPM-50. The format of the record is,

Address	Content	Remark
Alarming record addr.	Alarming parameter number	Refer to Table3.1
Addr +1	Alarming value	Record the value of alarming
Addr +2	Year	Alarming date
Addr +3	Month	
Addr +4	Date	
Addr +5	Hour	Alarming time
Addr +6	Minute	
Addr +7	Second	

When the alarming parameter resume normal (no longer over the limit), it is also recorded.
User can get the total period of over limit time.
Remark: when the alarming parameter resume to normal, the highest bit of Varbit15 is set to be 1 .

- Energy pulse output: The two digital outputs (DO) can be selected as energy pulse output. Any two of the 8 Active energy and Reactive energy can be assigned to be as the pulse output. The pulse width and pulse ratio can be set, while pulse width means how long the duration of the pulse is and pulse ratio means how much energy that one pulse is represented. When the energy accumulates to the setting limit, there will be a pulse output from the assigned DO port.

Pulse output assignment register: any integer from 0 to 8 . The digit 0 means no assignment, while 1 to 8 corresponding to Ep_imp, Ep_exp, Eq_imp, Eq_exp, Ep_total, Ep_net, Eq_total and Eq_net respectively.
Pulse ratio register: any integer from 1 to 6000. One digit represents 0.1 kwh or kvarh. This value is the minimum resolution of energy pulse output.
Pulse width setting register: any integer from 1 to 50 . One digit represents 20 ms .
The minimum time interval between two adjoining output pulses is 20 ms . If the pulse width is 20 ms , then maximum number of output pulses is 25 in one Second. If the pulse width is 80 ms , then the maximum number of output pulse is 10. In practice the pulse width
and the pulse ratio is selected according to system power. The relation of the two parameters should satisfied following expression,

$$
\text { Pulse ratio }>\frac{(\text { pulse width }+1) \times \text { Pmax }}{18000}
$$

In the expression, the Pmax is the maximum active power or reactive power. The unit is kW or kvar. Recommend pulse ratio is 3 to 5 times the right side value of the above expression.

- Relay output: The two relay output (option) can be used to control electric switch or equipment. There are two output modes of the relay, latching or momentary. Momentary mode is often used to control the electric switch. The closing time interval can be selected between 50 ms to 3000 ms .

ORDERING INFORMATION

DIMENSIONS

Unit: mm

COONECTIONS

Before doing the meter wiring connection, please make sure that the power is off, and the terminals are correct for their defined. For safety of instruments and equipments, a fuse (typical $1 \mathrm{~A} / 250 \mathrm{Vac}$) or breaker should be used in auxiliary power supply loop.

Auxiliary Power (Terminal Block 2)

Voltage \& Current Input (Terminal Block 1)

The connection has to relative the page 3 and page 4 of programming.
Voltage wiring: AWG16~12(1.3~2.0mm ${ }^{2}$)
Current wiring: AWG15~10(1.5~2.5mm ${ }^{2}$)

3Phase 4Wire

3Phase 4Wire

3Phase 4Wire（Balanced Load）

－ 3 Phase 4 wire（Balanced）with 2PT／1CT［ Setting：2LN，1CT ］

3Phase 3Wire

－ 3 Phase 3 wire with 2PT／2CT［ Setting：2LL，2CT ］

－ 3 Phase 3 wire without PT／2CT［ Setting：2LL，2CT ］

3Phase 3Wire（Balanced Load）
－ 3 Phase 3 wire（Balanced）with 2PT／1CT［ Setting：2LL，1CT］

1Phase 3Wire

－ 1 Phase 3 wire－［ Setting 3LN，3CT］

1Phase 2Wire

－ 1 Phase 2 wire－［ Setting 3LN，3CT ］

RS485／2DI（Terminal Block 2）and Extra 2DI／2DO／2Relay（Optional I／O Module） Wiring：AWG22～16（0．5～1．3mm ${ }^{2}$ ）

2DI（Standard）with external DC powered言容起
1112131415161718192021

2Relay（Optional）with
External Power Relay

4DI（Optional）
with internal DC powered

External Powered

RS485 Communication Port

erminate Resistor（at latest unit） 120～300ohm／0．25W（typical：1500hm）

(ㅁ) [1] [1] [四)

CPM-50 offers a large LCD(65wX58h) with blue characters and white backlight. There are not only 5 lines for reading, but also I/O status, engineer units, description of reading indications etc. The explain are as following;

Metering

- 8.8.8.8. 4 lines, $\mathbf{4}$ digital: 10.0 mm high; showing Voltage, Current, Power, Power Factor, Frequency, THD, Demand, Unbalance Factor, Max, Min etc.
- 8.8.8.8.8.8.8. 1 line, 9 digital: 6.0 mm high; showing Active Energy, Re-active Energy / Import, Export, Net, Total and Real Time Clock.

- Engineer Units

- VkV A kW MW kVar MVar kVA MVA Hz kwh kvarh \%
- If the metering are over 4 digital, the relative unit will be auto-change to K (Kilo) or M(Mega).
- I/O status indication:
- DIx (Digital Input): DIx will be displayed, when the DI has been input.
- ROx (Relay Output): ROx will be displayed, when the RO has been energized.
- Ω (Pulse Output): Ω will be displayed, when the DO has been set to Energy, and the Energy is accuumulating.
- il (RS 485 Communication): There are two squares in the label. One square displayed means the CPM-50 is to be inquired from Master only and CPM-50 isn't reply. Two squares displayed mean communication was ok between CPM-50 and Master.
- DOx (Digital Output): DOx will be displayed, when the DO has been energized.
- Load status
- ...lllll(The Percentage of Load) : Showing load current to rating current percentage
- \cos 가 (The Character of Load): cos will be displayed, when the load is inductive, and $-1-$ will be displayed, when the load is capacitive.
- 以 (Un-balanced): The readings are un-balanced factor of voltage, when the symbol was displayed with U . The readings are un-balanced factor of current, when the symbol was displayed with I.
\square Symbols for metering and reading B 1 character: 10.0 mm high ; The one 7 segments character is a description for metering of 4 lines as following;
II: Voltage ; I: Current ; P: Active Power ;
१: Re-active Power ; 5: Apparent Power
- PF (Power Factor): The symbol is power factor to descript for metering of fourth line.
- F (Frequency): The symbol is Frequency of system to descript for metering of fourth line.
- 1-2 2-3 3-1 (Line to Line): The symbols are descriptions the metering is line to line.
- 123 (Phase): The symbols are descriptions the metering is Phase to Neutral.
- ${ }_{\mathrm{N}}$ (Neutral): The symbol with \mid is the Current of neutral to descript for metering of fourth line.
- Avg(Average): The symbol is average to descript for meterings
- max min(Maximum / Minimum): The symbol is maximum or minimum to descript for meterings
- Symbol for Power Quality
- Demand(Demand): The symbol is demand to descript for meterings
- THO(Total Harmonic Distortion): The symbol with U is Voltage Total Harmonic Distortion. The symbol with \mid is Current Total Harmonic Distortion.

OPERATION: Please refer to the define and explain for parameters before programming.

DESCRIPTION OF KEY

Quick View Function: There are 5 parameters showing in each page. Pressing 4 front keys to quick view parameters:

	Metering Page	Programming Page
Enter key	Quick View for Voltage \& Current Pages	Acknowledgment and going to the next setting page
[V]Down key	Quick View for Energy and Clock Pages	Decreasing the number (9 , 8,.., $0,9, \ldots$)
\triangle Up key	Quick View for Power Pages	Increasing the number (0, 1,.., 9,0,...)
\square Shift key	Quick View for Power Quality Pages	to move cursor(the setting position)
$\begin{array}{\|l\|l} \Delta & \text { Up key + } \\ \text { Enter key } \end{array}$	Get into the Statistics pages	
\square Shift key +	Get into the meter parameter setting mode	Abort the setting and Exit in the page

QUICK VIEW FOR METERING AND READING:
The pages are purpose for description only, and not real system.

USER LEVEL(Quick view parameters)

Quick View for Voltage \& Current Pages, Press Enter key

Press ans page

Press Kining \downarrow

Fourth Page: Current(phase) Page
Line 1: $\mathrm{I}_{1}=232.2 \mathrm{~A}$
Line 2: $\mathrm{I}_{2}=232.3 \mathrm{~A}$
Line 3: $\mathrm{I}_{3}=232.3 \mathrm{~A}$
Line 4: $\mathrm{I}_{\mathrm{avg}}=232.2 \mathrm{~A}$ $\mathrm{I}_{\mathrm{avg}}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}\right) / 3$
Line 5: Active Energy: 142.3 kwh Imp: Import of energy
kwh: Engineer of Active energy
LOAD\%: 40\%, The percentage of the rated current.
가: Capacitive load
Go back to first page

Quick View for Energy and Clock Pages, press IV Down key

Press \mathbb{V} Key \downarrow

Press \mathbb{V} Key \downarrow

Ninth Page: Date Page
Line 5: Date: 06(M):08(D):2007(Y)
The Date function is optional for CPM-52, so CPM-51 do not
has this page to CPM-51 do not
has this page to show.

Seventh Page: Reactive Energy(Total Total = of Inductive and Capacitive) Page I Ind. Energy I +
Line 5: Reactive Energy: 93.8 kvarh
Total: Absolute sum of Ind. and Cap. of reactive energy
kvarh: Engineer Unit of Reactive Energy

I Cap. Energy I

Eighth Page: Reactive Energy(Net of Net =

 Inductive and Capacitive) Page I Ind. Energy I Line 5: Reactive Energy: 89.7 kvarhNet: Absolute subtration of Ind. and Cap. of reactive energy
kvarh: Engineer Unit of Reactive Energy

Tenth Page: Clock Page	The Clock
Line 5: Clock: 15(h):21(m):45(s)	function is optional for CPM-52, so
	CPM-51 do not has this page to show.

Press \triangle Key \downarrow

Press \triangle Key \downarrow

To show Power Pages
First Page:Active Power Page
Line 1: $P_{1}=49.50 \mathrm{~kW}$
Line 2: $\mathrm{P}_{2}=49.65 \mathrm{~kW}$
Line 3: $\mathrm{P}_{3}=49.61 \mathrm{~kW}$
Line 4: $\mathrm{P}_{\text {sum }}=148.7 \mathrm{~kW}$
$P_{\text {sum }}=P_{1}+P_{2}+P_{3}$
Line 5: Active Energy: 130.5 kwh
Exp: Export of energy
kwh: Engineer Unit of Active energy
LOAD\%: 40\%, The percentage of the rated current.
가: Capacitive load
Second Page: Reactive Power Page
Line 1: $Q_{1}=0.232 \mathrm{kvar}$
Line 2: $Q_{2}=0.257 \mathrm{kvar}$
Line 3: $Q_{3}=0.265 \mathrm{kvar}$
Line 4: $Q_{\text {sum }}=0.755 \mathrm{kvar}$ $\mathbf{Q}_{\text {sum }}=\mathbf{Q}_{1}+\mathbf{Q}_{\mathbf{2}}+\mathbf{Q}_{3}$
Line 5: Active Energy: 130.5 kwh
Exp: Export of energy
kwh: Engineer Unit of Active energy
LOAD\%: 40\%, The percentage of the rated current.
en: Inductive load
Third Page: Apparent Power Page
Line 1: $\mathrm{S}_{1}=49.01 \mathrm{kVA}$
Line 2: $\mathrm{S}_{2}=49.12 \mathrm{kVA}$
Line 3: $\mathrm{S}_{3}=49.11 \mathrm{kVA}$
Line 4: $\mathrm{S}_{\text {sum }}=147.2 \mathrm{kVA}$ $\mathrm{S}_{\text {sum }}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}$
Line 5: Active Energy: 130.5 kwh
Exp: Export of energy
kwh: Engineer Unit of Active energy
LOAD\%: 40\%, The percentage of the rated current.

Next Page

	Fourth Page: Power Factor Page Line 1: $\mathrm{PF}_{1}=0.989$ Line 2: $\mathrm{PF}_{2}=0.990$ Line 3: $\mathrm{PF}_{3}=0.988$ Line 4: $\mathrm{PF}=0.989$ $\mathrm{PF}=\left(\mathrm{PF}_{1}+\mathrm{PF}_{2}+\mathrm{PF}_{3}\right) / 3$ Line 5: Active Energy: 130.5 kwh Exp: Export of energy kwh: Engineer Unit of Active energy LOAD\%: 40\%, The percentage of the rated current.	
Press \triangle Key \downarrow		
	Fifth Page: Total Power \& PF Page Line 1: $P_{\text {sum }}=146.0 \mathrm{~kW}$ Line 2: $Q_{\text {sum }}=0.000$ kvar Line 3: $\mathrm{S}_{\text {sum }}=146.0 \mathrm{kVA}$ Line 4: PF=1.000 Line 5: Active Energy: 130.5 kwh Exp: Export of energy kwh: Engineer Unit of Active energy LOAD\%: 40\%, The percentage of the rated current.	
Press \triangle Key \downarrow		
	Sixth Page: Total Power \& Freq. Page Line 1: $P_{\text {sum }}=145.1 \mathrm{~kW}$ Line 2: $Q_{\text {sum }}=0.761 \mathrm{kvar}$ Line 3: $\mathrm{S}_{\text {sum }}=147.0 \mathrm{kVA}$ Line 4: Frequency=50.03 Hz Line 5: Active Energy: 130.5 kwh Exp: Export of energy kwh: Engineer Unit of Active energy LOAD\%: 40\%, The percentage of the rated current.	
Press \triangle Key \downarrow		
	Seventh Page: Power Demand Page Line 1: $P_{m d}=145.1 \mathrm{~kW}$ Line 2: $\mathbf{Q}_{\mathrm{md}}=0.761 \mathrm{kvar}$ Line 3: $\mathrm{S}_{\mathrm{md}}=147.0 \mathrm{kVA}$ Line 4: $\mathrm{F}=50.03 \mathrm{~Hz}$ Line 5: Active Energy: 130.5 kwh Exp: Export of energy kwh: Engineer Unit of Active energy LOAD\%: 40\%, The percentage of the rated current.	The Demand function is optional for CPM-52, so CPM-51 do not has this page to show.
\triangle	Go back to first page	

Quick View for Power Quality Pages, press \square Shift key

In any page			
Press		To show Power Quality Pages	

	Third Page: Maximum of Current (Phase) Line 1: $\mathrm{I}_{1}\left(\mathrm{I}_{1}\right.$ max $)=5.002 \mathrm{~A}$ Line 2: $\mathrm{I}_{2}\left(\mathrm{I}_{2 _ \text {max }}\right)=5.003 \mathrm{~A}$ Line 3: $\mathrm{I}_{3}\left(\mathrm{I}_{3 \text { max }}\right)=5.003 \mathrm{~A}$ Third Page: Minimum of Current (Phase) Line 1: $\mathrm{I}_{1}\left(\mathrm{I}_{1}\right.$ min $)=0.0 \mathrm{~A}$ Line 2: $\mathrm{I}_{2}\left(\mathrm{I}_{2}\right.$ min $)=0.0 \mathrm{~A}$ Line 3: $\mathrm{I}_{3}\left(\mathrm{I}_{3} \mathrm{~min}\right)=0.0 \mathrm{~A}$	
Enimer key \downarrow		
	Fourth Page: Maximum of Total Power and Power Factor Line 1: $P\left(P_{\text {max }}\right)=3.304 \mathrm{~kW}$ Line 2: $Q\left(Q_{\text {max }}\right)=0.017 \mathrm{kvar}$ Line 3: $\mathrm{S}\left(\mathrm{S}_{\text {max }}\right)=3.304 \mathrm{kVA}$ Line 4: $P F\left(P_{\max }\right)=1.000$ Fourth Page: Minimum of Total Power and Power Factor Line 1: $P\left(P_{\text {min }}\right)=0.000 \mathrm{~kW}$ Line 2: $Q\left(Q_{\text {min }}\right)=-0.001$ kvar Line 3: $\mathrm{S}\left(\mathrm{S}_{\mathrm{min}}\right)=0.000 \mathrm{kVA}$ Line 4: $P F\left(P_{\text {min }}\right)=0.000$	
Enter key \downarrow	Next Page	

Fifth Page: Maximum of Demand and Frequency
Line 1: $P\left(P_{\text {max_d }}\right)=0.162 \mathrm{~kW}$
Line 2: $Q\left(Q_{\text {max_d }}\right)=0.000 \mathrm{kvar}$
Line 3: $\mathbf{S}\left(\mathrm{S}_{\text {max-d }}\right)=0.162 \mathrm{kVA}$
Line 4: $F\left(F_{\text {max }}\right)=60.20 \mathrm{~Hz}$

Fifth Page: Minimum of Demand and Frequency
Line 1: $P\left(P_{\text {min_d }}\right)=0.000 \mathrm{~kW}$
Line 2: $Q\left(Q_{\text {min_d }}\right)=0.000 \mathrm{kvar}$
Line 3: $\mathbf{S}\left(\mathrm{S}_{\text {min_d }}\right)=0.000 \mathrm{kVA}$
Line 4: $F\left(F_{\text {min }} \mathrm{d}\right)=0.00 \mathrm{~Hz}$
Enter key \downarrow Go back to first page
PROGRAMMING:

ENGINEER LEVEL(Programming)

ENGINEER LEVEL(Programming)		
In any page	Press ID Shift key + Enter key to get into the Engineer Level and go back Metering Page	
(4) [
	PASS(Pass word): Pass word needed for going into the programming pages. Range: 0000 to 9999. Default: 0000 $>$ After key in the right pass word, press Enter key to go to the first page of programming, otherwise go back to the metering display page.	
Press Key \downarrow	Next Page	

15 $12 \quad 1$ 000400	Page 05 Pt1: Primary of PT Range: $100 \sim 500,000 \mathrm{~V}$ Default: 400 Operating: DShift key, $\Delta U p$ key, IVDown key	
Press Key \downarrow		
II FIE 79	Page 06 Pt2: Secondary of PT Range: 100 ~ 400 V Default: 400 Operating: D Shift key, \triangle Up key, DDown key	
Press Key \downarrow		
	Page 07 Ct1: Primary of CT Range: 5~10000 A Default: 5 Operating: \triangle Shift key, \triangle Up key, ■Down key	
Press Key \downarrow		
11	Page 08 do tYPE(DO type): The digital output mode can be set as alarm or pulse output. Selectable: PLS(Pulse) / AL(Alarm) Default: PLS Operating: \triangle Up key, \| Down key	Digital outputs (DO) are optional function in I/O module. Please specify the optional code in ordering.
Press Key \downarrow	Next Page	

Page 09

do1 PULS SLct(DO1 Pulse

selection): Selection the pulse output to relative which type of energy.
Selectable: 0(No output) /
1(Active Energy_Imp)/
2(Active Energy_Exp) /
3(Reactive Energy_Imp) /
4(Reactive Energy_Exp) /
5(Active Energy_Total) /
6(Active Energy_Net) /
7(Reactive Energy_Total) /
8(Reactive Energy_Net)
Default: 0 (None)
Operating:[UUp key, IVDown key

Page 10

Do2 PULS SLct(DO2 Pulse

selection): Selection the pulse output to relative which type of energy.
Selectable: 0(No output) /
1(Active Energy_Imp)/
2(Active Energy_Exp) /
3(Reactive Energy_Imp) /
4(Reactive Energy_Exp) /
5(Active Energy_Total) /
6(Active Energy_Net) /
7(Reactive Energy_Total) /
8(Reactive Energy_Net)
Default: 0(None)
Operating: [AUp key, [v Down key

Page 11

PULS WId: Width of pulse
Range: 1 ~ 50(x 20ms)
Default: 01

- The pulse width is integer from 1 to 50 . One digit is 20 ms .
Operating:IDShift key, Δ Up key, IVDown key

Press
Key

Press Key

Press Key \downarrow

Press Key \downarrow

0000

E- CLr(Clear energy values): Clear the Energy accumulated value
Selection: YES / no
Operating: \triangle Up key, ∇ Down key

key	

Page 20

DAtE(Date): System date setting. Display format is MM.DD.YYYY
Range: 01.01.2000 ~ 12.31.2099
Operating: D Shift key, \triangle Up key,
Iv Down key
而

Page 21

tIME(Time): System time setting.
Display format is hh:mm:ss
Range: 00:00:00 ~ 23:59:59
Operating:IDShift key, \triangle Up key,
VDown key

iv Down key	

Page 22

PASS(Pass word): The Pass word
can be changed in this page. It is important to remember the pass
word so that getting into the
engineer level in next time.
Range: 0000 ~ 9999
Default: 0000
Operating: \square Shift key, \triangle Up key, IVDown key

Protocol of ModBus RTU Mode

The Modbus RTU protocol is used for communication in CPM. The data format and error check method is defined in Modbus protocol. The half duplex query and respond mode is adopted in Modbus protocol. There is only one master device in the communication net. The others are slave devices, waiting for the query of the master.

Transmission mode The mode of transmission defines the data structure within a frame and the rules used to transmit data. The mode is defined in the following which is compatible with Modbus RTU Mode*.

Start Bit: 1 bit
Data bits: 8 bits
Parity: no parity
Stop bit: 1 bit
Error checking: CRC check
Framing

Address	Function	Data	Check
8-Bits	8 -Bits	$\mathrm{N} \times 8$-Bits	16 -Bits

Address: The address field of a message frame contains eight bits. Valid slave device addresses are in the range of 1~247 decimal. A master addresses a slave by placing the slave address in the address field of the message. When the slave ends its response, it places its own address in this address field of the response to let the master know which slave is responding.
Function: The function code field of a message frame contains eight bits. Valid codes are in the range of 1~255 decimal. When a message is sent from a master to a slave device the function code field tells the slave what kind of action to perform.

Code	Meaning	Action
$\mathbf{0 1}$	Read Relay Output Status	Obtain current status of Relay Output
$\mathbf{0 2}$	Read Digital Input (DI) Status	Obtain current status of Digital Input
$\mathbf{0 3}$	Read Data	Obtain current binary value in one or more registers
$\mathbf{0 5}$	Control Relay Output	Force Relay to a state of on or off
$\mathbf{1 6}$	Preset Multiple-Registers	Place specific binary values into a series of consecutive Multiple-Registers

Data: The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. The data field of messages sent from a master to slave devices contains additional information which the slave must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the count of actual data bytes in the field. For example, if the master requests a slave to read a group of holding registers (function code 03); the data field specifies the starting register and how many registers are to be read. If the master writes to a group of registers in the slave (function code 10 hexadecimal), the data field specifies the starting register, how many registers to write, the count of data bytes to follow in the data field, and the data to be written into the registers.

If no error occurs, the data field of a response from a slave to a master contains the data requested. If an error occurs, the field contains an exception code that the master application can use to determine the next action to be taken. The data field can be nonexistent (of zero length) in certain kinds of messages.

Error Check: Messages include an error's checking field that is based on a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The CRC field is two bytes, containing a 16bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message.

The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results. The CRC is started by first preloading a 16-bit register to all 1's. Then a process begins of applying successive 8 -bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC. During generation of the CRC, each 8-bit character is exclusive ORed with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0 , no exclusive OR takes place. This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8 -bit bytes exclusive ORed with the register current value and the process repeats for eight more shifts as described above. The final contents of the register, after all the bytes of the message have been applied, is the CRC value. When the CRC is appended to the message, the low-order byte is appended first, followed by the high-order byte.

Format of communication

Add	Fun	Data start reg hi	Data start reg lo	Data \#of regs hi	Data \#of regs lo	CRC16 hi	CRC16 lo
06 H	03 H	00 H	00 H	00 H	21 H	$\mathbf{8 4 H}$	65 H

Addr: address of slave device
Fun: function code
Data start reg hi: start register address high byte
Data start reg lo: start register address low byte
Data \#of reg hi: number of register high byte
Data \#of reg lo: number of register low byte
CRC16 Hi: CRC high byte
CRC16 Lo: CRC low byte

1. Read Status of Relay (Function Code 01): This function code is used to read status of relay.
$1=0 n$
$0=$ Off
There are 2 Relays in CPM series. The Address of each Relay is
Relay1 $=0000 \mathrm{H}$,
Relay2=0001H.
The following query is to read Relay Status of the device Number 17.
Query

Add	Fun	Relay start reg hi	Relay start reg lo	Relay \#of regs hi	Relay \#of regs lo	CRC16 hi	CRC16 lo
11 H	01 H	00 H	00 H	00 H	02 H	BFH	5 BH

Response

The CPM response includes the CPM address, function code, quantity of data byte, the data, and error checking. An example response to read the status of Relay1 and Relay2 is shown as following.
The status of Relay1 and Relay2 is responding to the last 2 bit of the data.
Relay1: bit0 Relay2: bit1

Add	Fun	Byte Count	Data	CRC hi	CRC lo
11 H	01 H	01 H	02 H	D4H	89 H

The content of the data is,

7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	0

MSB
Relay1 = OFF (LSB), Relay2=ON (Left to LSB)
2. Read the Status of DI (Function Code 02): This function code is used to read status.

1=On
$0=0 \mathrm{ff}$
There are 4 DIs in CPM series. The Address of each DI is
DI1 $=0000 \mathrm{H}$,
DI2 $=0001 \mathrm{H}$,
DI3 $=0002 \mathrm{H}$,
$\mathrm{DI} 4=0003 \mathrm{H}$.
The following query is to read the 4 DI Status of the device Number 17.

Query

Add | 11 H | 02 H | 00 H | 00 H | 00 H | 04 H | 7 BH |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Response

The CPM response includes the CPM address, function code, quantity of data characters, the data characters, and error checking. An example response tread the status of 4 DIs is shown as following.
The status of each is responding to the last 4 bit of the data.

DI1: bit0		DI2: bit1	DI3: bit2		DI4: bit3
Add	Fun	Byte Count	Data	CRC 16 hi	CRC 16 Io
11H	02H	01H	03H	E5H	49H

The content of the data is,

7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1
MSB							
DI1=On							

3. Read Data (Function Code 03)

Query

This function allows the master to obtain the measurement results of CPM series.
An example as following to read the 3 measured data ($\mathrm{F}, \mathrm{V} 1$ and V 2) from slave device number 17 , the data address of F is $0130 \mathrm{H}, \mathrm{V} 1$ is 0131 H and V 2 is 0132 H .

Add	Fun	Data start addr hi	Data start addr lo	Data \#of regs hi	Data \#of regs lo	CRC16 hi	CRC16 lo
11 H	$\mathbf{0 3 H}$	$\mathbf{0 1 H}$	$\mathbf{3 0 H}$	$\mathbf{0 0 H}$	03 H	06 H	$\mathbf{A 8 H}$

Response

The CPM response includes the CPM address, function code, quantity of data byte, data, and error checking.
An example response to read $\mathrm{F}, \mathrm{V} 1$ and $\mathrm{V} 2(\mathrm{~F}=1388 \mathrm{H}(50.00 \mathrm{~Hz}), \mathrm{V} 1=03 \mathrm{E} 7 \mathrm{H}(99.9 \mathrm{~V})$, $\mathrm{V} 2=03 \mathrm{E} 9 \mathrm{H}$ (100.1V) is shown as following

Add	Fun	Byte Count	Data 1 Hi	Data 1 Lo	Data 2 Hi	Data 2 Lo	Data 3 Hi	Data 3 Lo	CRC16 hi	CRC16 lo
11 H	$\mathbf{0 3 H}$	06 H	13 H	88 H	$\mathbf{0 3 H}$	E 7 H	03 H	$\mathrm{E9H}$	7 FH	$\mathbf{0 4 H}$

4. Control Relay (Function Code 05)
 Query

This message forces a single Relay either on or off. Any relay that exist switch in the CPM can be forced to be either status (on or off). The address of Relays starts at 0000H (Relay1=0000H, Relay2=0001H). The data value FFOOH will set the Relay on and the value 0000 H will turn it off; all other values are illegal and will not affect that relay.

The example below is a request to the device number 17 to turn on Relay1.

Add	Fun	DO addr hi	DO addr lo	Value hi	Value lo	CRC16 hi	CRC16 lo
11 H	05 H	00 H	00 H	FFH	00 H	8 EH	AAH

The normal response to the command request is to retransmit the message as received after the Relay status has been altered.

Add	Fun	Relay addr hi	Relay addr lo	Value hi	Value lo	CRC16 hi	CRC16 lo
$\mathbf{1 1 H}$	$\mathbf{0 5 H}$	$\mathbf{0 0 H}$	$\mathbf{0 0 H}$	FFH	$\mathbf{0 0 H}$	$\mathbf{8 E H}$	AAH

5. Preset / Reset Multi-Register(Function Code 16)
 Query

Function 16 allows the user to modify the contents of a Multi-Register. Any Register that exists within the CPM can have its contents changed by this message.
The example below is a request to a device number 17 to Preset Ep_imp(17807783.3KWH), while its Hex Value 0A9D4089H. Ep_imp data address is0156H and 0157H.

Add	Fun	Data Start addr hi	Data Start addr lo	Data regs Hi	$\begin{aligned} & \text { Data } \\ & \text { regs Lo } \end{aligned}$	Byte Count	Value Hi	Value Lo	Value Hi	Value Io	$\begin{array}{\|c} \hline \mathrm{CRC} \\ 16 \\ \mathrm{Hi} \\ \hline \end{array}$	$\begin{gathered} \text { CRC } \\ 16 \\ \text { Lo } \\ \hline \end{gathered}$
11H	10H	01H	56H	00H	02H	04H	OAH	9DH	40H	89H	4DH	B9H

Response

The normal response to a preset Multi-Register request includes the CPM address, function code, data start register, the number of registers, and error checking.

Add	Fun	Data Start addr hi	Data Start addr lo	Data regs Hi	Data regs Lo	CRC 16	CRC Hi
Lo							

| Name | \|Address | | Range | Explain | Initial | \|Write/Read| | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPM Parameter Setting | | | Function 03 Read; Function 16 Presetting | | | |
| Pass Word | 0100h | 0~9999 | Pass Word | | R/W | |
| Address | 0101h | 1~247 | Device address of RS485 Communication | | R/W | |
| Baud Rate | 0102h | 600~38400 | Baud Rate of RS485 Communication | | R/W | |
| Wiring of Voltage Input | 0103h | 0~2 | Voltage Input Wiring Mode 0: 3LN, 1: 2LN, 2: 2LL | | R/W | |
| Wiring of Current Input | 0104h | 0~2 | Current Input Wiring Mode
 $0: 3 C T, \quad 1: 1 C T, \quad 2: 2 C T$ | | R/W | |
| $\begin{gathered} \text { Primary of } \\ \text { PT } \end{gathered}$ | $\begin{array}{\|c\|} \hline 0105 h^{*} \\ \text { (Hi Word) } \end{array}$ | 100~500000 | Primary Value of PT | | R/W | |
| | $\begin{gathered} 0106 \mathrm{~h}^{*} \\ (\text { Lo Word) } \end{gathered}$ | | Primary Value of PT | | R/W | |
| $\begin{array}{\|\|l\|} \hline \text { Secondary } \\ \text { of PT } \end{array}$ | 0107h | 100~400 | Secondary Value of PT | | R/W | |
| $\begin{array}{\|c\|} \hline \text { Primary of } \\ \text { CT } \end{array}$ | 0108h | 5~10000 | Primary Value of CT | | R/W | |
| DO Mode | 0109h | 0~1 | Digital output mode 0: Pulse Output 1: Alarm Output | | R/W | |
| DO1 vs. Energy pulse o/p | 010Ah | 0~8 | Energy Parameter Number associated with DO1. Please refer to the page 19/40 of manual. | | R/W | |
| DO2 vs. Energy pulse o/p | 010Bh | 0~8 | Energy Parameter Number associated with DO2. Please refer to the page 19/40 of manual. | | R/W | |
| Pulse Width | 010Ch | 1~50 | Pulse Width | | R/W | |
| Pulse Rate | 010Dh | 1~6000 | Pulse Rate | | R/W | |
| $\begin{array}{\|\|l\|} \hline \text { RO1 mode } \\ \text { selection } \end{array}$ | 010Eh | 0~1 | Relay1 Energized Mode
 0 : Latch 1: Momentary | | R/W | |
| | 010Fh | 50~3000 | Relay1 Pulse Width | | R/W | |
| $\begin{array}{\|c} \hline \begin{array}{c} \text { RO2 mode } \\ \text { selection } \end{array} \\ \hline \end{array}$ | 0110h | 0~1 | Relay2 Energized Mode
 0: Latch 1: Momentary | | R/W | |

Name	Address	Range	Explain	Initial	Write/Read
	0111 h	$50 \sim 3000$	Netay		
	0112 h	$0 \sim 120$	LCD Back light Time	R / W	

Name	Address	Range	Explain	Initial	Write/Read	Note
I_{3}	013Bh	0~65535	Current I_{3} _(the numerical value in register) The real physical value is $\mathrm{I}_{3}=\mathrm{I}_{3} \mathrm{r} \times(\mathrm{CT} 1 / 5) / 1000$ (Unit: A)		R	
$\mathrm{I}_{\text {avg }}$	013Ch	0~65535	Average Current lavg_r (the numerical value in register) The real physical value is $\mathrm{I}_{\mathrm{avg}}=\mathrm{I}_{\text {avg_r }} \times(\mathrm{CT} 1 / 5) / 1000 \text { (Unit: A) }$		R	
I_{n}	013Dh	0~65535	Neutral Line Current $I_{n _r}$ (the numerical value in register) The real physical value is $\mathrm{I}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}} \mathrm{r} \times(\mathrm{CT} 1 / 5) / 1000$ (Unit: A)		R	
P_{1}	013Eh	-32768~32767	Phase Active Power $P_{1 _r}$ (the numerical value in register) The real physical value is $\mathrm{P}_{1}=\mathrm{P}_{1} \times \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5)$ (Unit: W)		R	
P_{2}	013Fh	-32768~32767	Phase Active Power $\mathrm{P}_{2 _r}$ (the numerical value in register) The real physical value is $P_{2}=P_{2-} \times(P T 1 / P T 2) \times(C T 1 / 5)$ (Unit: W)		R	
P_{3}	0140h	-32768~32767	Phase Active Power P_{3} _ (the numerical value in register) The real physical value is $\mathbf{P}_{3}=P_{3} \times \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5)$ (Unit: W)		R	
$\mathbf{P}_{\text {sum }}$	0141h	-32768~32767	System Active Power $\mathrm{P}_{\text {sum_r }}$ (the numerical value in register) The real physical value is $P_{\text {sum }}=P_{\text {sum }-} \times(\text { PT1/PT2 }) \times(\text { CT1/ 5) (Unit: W) }$		R	
\mathbf{Q}_{1}	0142h	-32768~32767	Phase Reactive Power $Q_{1 _ \text {r }}$ (the numerical value in register) The real physical value is $\mathrm{Q}_{1}=\mathrm{Q}_{1} \times \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5)$ (Unit: Var)		R	
\mathbf{Q}_{2}	0143h	-32768~32767	Phase Reactive Power $Q_{2 _r}$ (the numerical value in register) The real physical value is $\mathrm{Q}_{2}=\mathrm{Q}_{2} \times$ (PT1/PT2) $\times(\mathrm{CT} 1 / 5)$ (Unit: Var)		R	
\mathbf{Q}_{3}	0144h	-32768~32767	Phase Reactive Power Q_{3} r(the numerical value in register) The real physical value is $\mathrm{Q}_{3}=\mathrm{Q}_{3} \times$ (PT1/PT2) \times (CT1/5) (Unit: Var)		R	
$\mathbf{Q}_{\text {sum }}$	0145h	-32768~32767	System Reactive Power $Q_{\text {sum_r }}$ (the numerical value in register) The real physical value is $Q_{\text {sum }}=Q_{\text {sum } r} \times(\text { PT1/PT2 }) \times(\text { CT1/ 5) (Unit: Var) }$		R	
S_{1}	0146h	0~65535	Phase Apparent Power $\mathrm{S}_{1 _ \text {_(}}$ (the numerical value in register) The real physical value is $\mathrm{S}_{1}=\mathrm{S}_{1} \times \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5) \text { (Unit: VA) }$		R	
S_{2}	0147h	0~65535	Phase Apparent Power $\mathrm{S}_{2 \text { _r }}$ (the numerical value in register) The real physical value is $\mathrm{S}_{2}=\mathrm{S}_{2 \mathrm{r}} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5) \text { (Unit: VA) }$		R	
S_{3}	0148h	0~65535	Phase Apparent Power S_{3-r} r(the numerical value in register) The real physical value is $\mathrm{S}_{3}=\mathrm{S}_{3-r} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5) \text { (Unit: VA) }$		R	
$\mathrm{S}_{\text {sum }}$	0149h	0~65535	System Apparent Power $\mathrm{S}_{\text {sum_r }}$ (the numerical value in register) The real physical value is $S_{\text {sum }}=S_{\text {sum } r} \times(\mathrm{PT} 1 / \mathrm{PT} 2) \times(\mathrm{CT} 1 / 5) \text { (Unit: VA) }$		R	

Name	Address	Range	Explain	Initial	Write/Read	Note
PF1	014Ah	-1000~1000	Phase Power Factor PF1_r(the numerical value in register) The real physical value is PF1= PF1 r/1000		R	
PF2	014Bh	-1000~1000	Phase Power Factor PF2_r(the numerical value in register) The real physical value is PF2= PF2 r/1000		R	
PF3	014Ch	-1000~1000	Phase Power Factor PF3_r(the numerical value in register) The real physical value is PF3= PF3_r/1000		R	
PF	014Dh	-1000~1000	System Power Factor_r(the numerical value in register) The real physical value is $\mathrm{PF}=\mathrm{PF} \mathrm{r} / 1000$		R	
Vunbl	014Eh	0~3000	Voltage Unbalance Factor Uunbl_r(the numerical value in register) Vunbl=(Uunbl_r/1000)×100\%		R	
lunbl	014Fh	0~3000	Current Unbalance Factor lunbl_r(the numerical value in register) lunbl=(lunbl r/1000)×100\%		R	
Load Type	0150h	4Ch/43h/52h	Load Type (L/C/R) 4Ch: L $43 \mathrm{~h}: \mathrm{C} \quad$ 52h: R		R	
Pmd	0151h	-32768~32767	Power Demand Pmd_r(the numerical value in register) The real physical value is Pmd= Pmd_r $\times($ PT1/PT2) \times (CT1/5) (Unit: W)		R	$\begin{array}{\|l\|} \hline \text { CPM } \\ -52 \\ \text { only } \\ \hline \end{array}$
Qmd	0152h	-32768~32767	Reactive power Demand Qmd_r(the numerical value in register) The real physical value is Qmd= Qmd_r×(PT1/PT2)×(CT1/5) (Unit: Var)		R	$\begin{array}{\|l\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
Smd	0153h	0~65535	```Apparent Power Demand Smd_r(the numerical value in register) The real physical value is Smd= Smd_r \(\times\) (PT1/PT2) \(\times(\) CT1/ 5) (Unit: VA)```		R	$\begin{array}{\|l\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
	0154h					
	0155h					
Energy Measurements			Function 03 Read; Function 16 Preset			
Imp Active Energy*		0~99999999.9	Import Active Energy Ep_imp_r(the numerical value in register)		R/W	
	$\begin{array}{\|c\|} \hline 0157 h^{*} \\ \text { (Lo word) } \end{array}$		```Import Active Energy Ep_imp_r(the numerical value in register) The real physical value is Ep_imp= Ep_imp_r / 10 (Unit: Kwh)```		R/W	
Exp Active Energy*	$0158 h^{*}$ (Hi word)	0~99999999.9	Export Active Energy Ep_exp_r(the numerical value in register)		R/W	
			Export Active Energy Ep_exp_r(the numerical value in register) The real physical value is Ep_exp= Ep_exp_r / 10 (Unit: Kwh)		R/W	
Imp Reactive Energy*		0~99999999.9	Import Reactive Energy Eq_imp_r(the numerical value in register)		R/W	
			Import Reactive Energy Eq_imp_r(the numerical value in register) The real physical value is Eq_imp=Eq_imp_r/ 10 (Unit: Kvarh)		R/W	
Exp Reactive Energy *	015Ch* (Hi word)	0~99999999.9	Export Reactive Energy Eq_exp_r(the numerical value in register)		R/W	
			Export Reactive Energy Eq_exp_r(the numerical value in register) The real physical value is Eq_imp=Eq_imp_r/ 10 (Unit: Kvarh)		R/W	

Name	\|Address	Range	Explain	Initial	Write/Read	Note
Total Active Energy*	$\begin{array}{\|c\|} \hline \text { 015Eh* } \\ \text { (Hi word) } \end{array}$	0~99999999.9	Active Energy Ep_total_r(the numerical value in register)		R/W	
	$\begin{array}{\|c\|} \hline \text { 015Fh* } \\ \text { (Lo word) } \end{array}$		Active Energy Ep_total_r(the numerical value in register) The real physical value is Ep_total= Ep_total_r/ 10 (Unit: Kwh)		R/W	
Net Active Energy*	0160h* (Hi word)	0~99999999.9	Net Active Energy Ep_net_r(the numerical value in register)		R/W	
	0161h* (Lo word)		Net Active Energy Ep_net_r(the numerical value in register) The real physical value is Ep_net= Ep_net_r/ 10 (Unit: Kwh)		R/W	
TotalReactive Energy*	$\begin{array}{\|c\|} \hline 0162 h^{*} \\ \text { (Hi word) } \\ \hline \end{array}$	0~99999999.9	Reactive Energy Eq_total_r(the numerical value in register)		R/W	
	0163h* (Lo word)		Reactive Energy Eq_total_r(the numerical value in register) The real physical value is Eq_total= Eq_total_r / 10 (Unit: Kvarh)		R/W	
Net Reactive Energy*	$\begin{array}{\|c\|} \hline 0164 h^{*} \\ \text { (Hi word) } \end{array}$	0~99999999.9	Net Reactive Energy Eq_net_r(the numerical value in register)		R/W	
	$\begin{array}{\|c\|} \hline 0165 h^{*} \\ \text { (Lo word) } \end{array}$		Net Reactive Energy Eq_net_r(the numerical value in register) The real physical value is Eq_net= Eq_net_r/ 10 (Unit: Kwh)		R/W	
	0166h				R/W	
	0167h				R/W	
Power Quality Measurements			Function 03 Read;			
THD ${ }_{\mathrm{v} 1}$	0168h	0~10000	Total Harmonic Distortion of V_{1} or V_{12}, $T H D_{\mathrm{V} 1 __{1}}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{V}_{1}}=\mathrm{THD}_{\mathrm{v}_{1} \mathrm{r}} / 10000 \times 100 \%$		R	
THD ${ }_{\text {v2 }}$	0169h	0~10000	Total Harmonic Distortion of V_{2} or V_{23}, $T H D_{\mathrm{V}_{2} \text { _(}}$ the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{v} 2}=\mathrm{THD}_{\mathrm{v} 2 \mathrm{r}} / 10000 \times 100 \%$		R	
THD ${ }_{\text {v }}$	016Ah	0~10000	Total Harmonic Distortion of V_{3} or V_{31}, $\mathrm{THD}_{\mathrm{v}_{3} \text { _(the }}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{v}_{3}}=\mathrm{THD}_{\mathrm{v}_{3} \mathrm{r}} / 10000 \times 100 \%$		R	
THD ${ }_{\text {v_avg }}$	016Bh	0~10000	Average Total Harmonic Distortion of Voltage, $T H D_{V_{_} \text {avg_r }}$ (the numerical value in register) The real physical value is $T H D_{V_{\text {avg }}}=T H D_{V_{\text {avg }}} / 10000 \times 100 \%$		R	
THD ${ }_{\text {I1 }}$	016Ch	0~10000	Total Harmonic Distortion of I_{1}, THD $_{\text {I } 1 \text { _(the }}$ numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{I} 1}=\mathrm{THD}_{\mathrm{I}_{1} /} / 10000 \times 100 \%$		R	
THD ${ }_{\text {I2 }}$	016Dh	0~10000	Total Harmonic Distortion of I_{2}, THD $_{\mathrm{I}_{2} \text { I }}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{I}_{2}}=\mathrm{THD}_{\mathrm{I}_{2} \mathrm{r}} / 10000 \times 100 \%$		R	
THD ${ }_{\text {I3 }}$	016Eh	0~10000	Total Harmonic Distortion of I_{3}, THD $_{\mathrm{I}_{3} \mathrm{r}}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{I}_{3}}=\mathrm{THD}_{\mathrm{I}_{3} \mathrm{r}} / \mathbf{1 0 0 0 0 \times 1 0 0 \%}$		R	
THD ${ }_{\text {Iavg }}$	016Fh	0~10000	Total Harmonic Distortion of $\mathrm{I}_{\text {avg }}$, THD $_{\text {Iavg_r }}$ (the numerical value in register) The real physical value is $T H D_{\text {Iavg }}=T H D_{\text {lavg }} / 10000 \times 100 \%$		R	

Name	Address	Range	Explain	Initial	Write/Read	Note
$\mathrm{IH}_{\mathrm{V} 1}$	$\begin{gathered} \text { 0170h } \\ \underset{\sim}{\sim} \\ 018 \mathrm{DH} \end{gathered}$	0~10000	Individual Harmonic of V_{1} or V_{12} (2nd to 31 st), $\mathrm{IH}_{\mathrm{v}_{1} \text { _(}}$ (the numerical value in register) The real physical value is $\mathrm{IH}_{\mathrm{V} 1}=\mathrm{IH}_{\mathrm{V} 1 \mathrm{r}} / 10000 \times 100 \%$		R	$\begin{gathered} \text { CPM } \\ -52 \\ \text { only } \end{gathered}$
$\mathrm{THD}_{\text {v1_o }}$	018Eh	0~10000	Total Odd Harmonic Distortion of $\mathrm{V}_{1} \circ$ or $\mathrm{V}_{12} \mathrm{o}$, $T H D_{\text {v1_O_(}}$ the numerical value in register) The real physical value is $T H D_{\mathrm{v} 1} \mathrm{o}=T H D_{\mathrm{v} 1} \mathrm{or} / 10000 \times 100 \%$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD ${ }_{\text {V1_E }}$	018Fh	0~10000	Total Even Harmonic Distortion of $\mathrm{V}_{1 \mathrm{E}}$ or $\mathrm{V}_{12 \mathrm{E}}, \mathrm{THD}_{\mathrm{V} 1 _\mathrm{E}_{-r} \text { (the numerical value in }}$ register) The real physical value is $T H D_{V 1 E}=T H D_{V_{1} E_{r}} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{CF}_{\mathrm{V} 1}$	0190h	0~65535	Crest factor of V_{1} or $\mathrm{V}_{12}, \mathrm{CF}_{\mathrm{V} 1 \text { r }}$ (the numerical value in register) The real physical value is $C F_{\mathrm{V} 1}=C F_{\mathrm{V} 1 \mathrm{r}} / 1000$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{THFF}_{\mathrm{v} 1}$	0191h	0~10000	Telephone interference factor of V_{1} or V_{12}, THFF $_{\mathrm{V} 1 _^{\text {- }}}$ (the numerical value in register) The real physical value is THFF $_{V_{1}}=$ THFF $_{\mathrm{V}_{1} /} / 10000 \times 100 \%$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{IH}_{\mathrm{V} 2}$	0192h 01AFh	0~10000	Individual Harmonic of V_{2} or V_{23} (2nd to 31st), $\mathrm{IH}_{\mathrm{V} 2} \mathrm{r}$ (the numerical value in register) The real physical value is $I H_{V 2}=I H_{V 2} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{THD}_{\mathrm{V} 2^{\prime} \mathrm{O}}$	01B0h	0~10000	Total Odd Harmonic Distortion of $\mathrm{V}_{2} \mathrm{o}$ or $\mathrm{V}_{23-\mathrm{o}}$, $T H D_{\mathrm{V} 2} \circ$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{V} 2 \mathrm{O}}=\mathrm{THD}_{\mathrm{V} 2} \mathrm{or}_{\mathrm{r}} / 10000 \times 100 \%$		R	$\begin{aligned} & \hline \text { CPM } \\ & -52 \\ & \text { only } \end{aligned}$
THD ${ }_{\text {V2_E }}$	01B1h	0~10000	Total Even Harmonic Distortion of $\mathrm{V}_{2 \mathrm{E}}$ or $\mathrm{V}_{23 \mathrm{E}}, \mathrm{THD}_{\mathrm{V} 2 \mathrm{Er}}$ rthe numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{V} 2 \mathrm{E}}=\mathrm{THD}_{\mathrm{V} 2 \mathrm{Er}} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{CF}_{\mathrm{v} 2}$	01B2h	0~65535	Crest factor of V_{2} or $\mathrm{V}_{23}, \mathrm{CF}_{\mathrm{V}_{2} \text { r }}$ (the numerical value in register) The real physical value is $\mathrm{CF}_{\mathrm{V} 2}=\mathrm{CF}_{\mathrm{V} 2 \mathrm{r}} / 1000$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{THFF}_{\mathrm{v} 2}$	01B3h	0~10000	Telephone interference factor of V_{2} or V_{23}, $\mathrm{THFF}_{\mathrm{V} 2 _r}$ (the numerical value in register) The real physical value is THFF $_{V 2}=$ THFF $_{V 2 \text { r }} / 10000 \times 100 \%$		R	$\begin{aligned} & \hline \text { CPM } \\ & -52 \\ & \text { only } \end{aligned}$
$\mathrm{IH}_{\mathrm{v} 3}$	$\begin{aligned} & \text { 01B4h } \\ & \sim \\ & \text { 01D1h } \end{aligned}$	0~10000	Individual Harmonic of V_{3} or V_{31} (2nd to 31st), $\mathrm{IH}_{\text {V3_r }}$ r the numerical value in register) The real physical value is $I H_{V 3}=I H_{V 3} r / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{THD}_{\text {v3_0 }}$	01D2h	0~10000	Total Odd Harmonic Distortion of $\mathrm{V}_{3} \mathrm{o}$ or $\mathrm{V}_{31 _0}$, $T H D_{\mathrm{V} 3} \circ \mathrm{r}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{V} 3 \mathrm{o}}=T H D_{\mathrm{v}_{3} \mathrm{o}_{1}} / 10000 \times 100 \%$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD ${ }_{\text {V3_E }}$	01D3h	0~10000	Total Even Harmonic Distortion of $\mathrm{V}_{3 \mathrm{E}}$ or $\mathrm{V}_{31 \mathrm{E}}$, $\mathrm{THD}_{\mathrm{V}_{3} \mathrm{E}_{-} \mathrm{r}}$ (the numerical value in register) The real physical value is $T H D_{V_{3} E}=T H D_{V_{3} E_{r}} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{CF}_{\text {v }}$	01D4h	0~65535	Crest factor of V_{3} or $\mathrm{V}_{31}, \mathrm{CF}_{\mathrm{V3} \text { _r }}$ (the numerical value in register) The real physical value is $\mathrm{CF}_{\mathrm{V} 3}=\mathrm{CF}_{\mathrm{V} 3 \mathrm{r}} / 1000$		R	$\begin{gathered} \hline \text { CPM } \\ -52 \\ \text { only } \end{gathered}$

Name	Address	Range	Explain	Initial	Write/Read	Note
$\mathrm{THFF}_{\mathrm{v} 3}$	01D5h	0~10000	Telephone interference factor of V_{3} or V_{31}, THFF $_{\text {V3_r }}$ (the numerical value in register) The real physical value is THFF $_{\mathrm{V} 3}=$ THFF $_{\mathrm{V} 3 \mathrm{r}} / 10000 \times 100 \%$		R	$\begin{gathered} \text { CPM } \\ -52 \\ \text { only } \end{gathered}$
$\mathrm{IH}_{\mathrm{I}_{1}}$	$\begin{aligned} & \text { 01D6h } \\ & \sim \\ & \text { 01F3h } \end{aligned}$	0~10000	Individual Harmonic of I_{1} (2nd to 31st), $\mathrm{IH}_{\mathrm{I} 1 _ \text {_ }}$ (the numerical value in register) The real physical value is $I H_{I_{1}}=I H_{I_{1} r} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD ${ }_{\text {I1_0 }}$	01F4h	0~10000	Total Odd Harmonic Distortion of I_{1} _ 0 , $\mathrm{THD}_{\mathrm{I}_{1} \text { _ _ r }}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{I}_{1} \mathrm{O}}=\mathrm{THD}_{\mathrm{I}_{1} \mathrm{o}_{\mathrm{r}}} / 10000 \times 100 \%$		R	$\begin{aligned} & \hline \text { CPM } \\ & -52 \\ & \text { only } \end{aligned}$
THD ${ }_{\text {I1_E }}$	01F5h	0~10000	Total Even Harmonic Distortion of I 1_{1-E}, $\mathrm{THD}_{\mathrm{I}_{1-E} \text { _r }}$ (the numerical value in register) The real physical value is $T H D_{I_{1}} \mathrm{E}=T H D_{\mathrm{I}_{1} \mathrm{E}_{\mathrm{r}}} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{KF}_{\mathrm{I}_{1}}$	01F6h	0~65535	K factor of $\mathrm{I}_{1}, \mathrm{KF}_{\mathrm{I}_{1}}$ r (the numerical value in register) The real physical value is $K F_{I_{1}}=K F_{I_{1}} \mathrm{r} / 10$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{IH}_{\text {I }}$	$\begin{gathered} \text { 01F7h } \\ \underset{\sim}{\sim} \\ 0214 \mathrm{~h} \end{gathered}$	0~10000	Individual Harmonic of I_{2} (2nd to 31st), $\mathrm{IH}_{\mathrm{I}_{2} \mathrm{r}}$ (the numerical value in register) The real physical value is $I H_{I_{2}}=\mathrm{IH}_{\mathrm{I}_{2} \mathrm{r}} / 10000 \times 100 \%$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD $\mathrm{I}_{\text {2 }}$ O	0215h	0~10000	Total Odd Harmonic Distortion of $\mathrm{I}_{2} \mathrm{o}$, $\mathrm{THD}_{\mathrm{I}_{2} \mathrm{o}_{1} \text { (the numerical value in register) }}$ The real physical value is $\mathrm{THD}_{\mathrm{I}_{2} \mathrm{O}}=\mathrm{THD}_{\mathrm{I}_{2} \mathrm{O}_{\mathrm{r}}} / 10000 \times 100 \%$		R	$\begin{gathered} \hline \text { CPM } \\ -52 \\ \text { only } \end{gathered}$
THD ${ }_{\text {I2_E }}$	0216h	0~10000	Total Even Harmonic Distortion of $\mathrm{I}_{2 \mathrm{E}}$, $\mathrm{THD}_{\mathrm{I}_{2} \mathrm{E}_{-} \text {(the numerical value in register) }}$ The real physical value is $T H D_{I_{2}}=T H D_{I_{2} E_{r}} / 10000 \times 100 \%$		R	$\begin{aligned} & \hline \text { CPM } \\ & -52 \\ & \text { only } \end{aligned}$
$\mathrm{KF}_{\mathrm{I}_{2}}$	0217h	0~65535	K factor of $\mathrm{I}_{2}, \mathrm{KF}_{\mathrm{I}_{2}}$ r(the numerical value in register) The real physical value is $K F_{\mathrm{I}_{2}}=K \mathrm{~F}_{\mathrm{I}_{2} \mathrm{r}} / 10$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{IH}_{\text {I }}$	$\begin{gathered} 0218 \mathrm{~h} \\ \underset{\sim}{0235 h} \end{gathered}$	0~10000	Individual Harmonic of I_{3} (2nd to 31st), $\mathrm{IH}_{\mathrm{I}_{3}}$ (the numerical value in register) The real physical value is $I H_{I_{3}}=I H_{I_{3} r} / 10000 \times 100 \%$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD ${ }_{\text {I3_O }}$	0236h	0~10000	Total Odd Harmonic Distortion of $\mathrm{I}_{3} \mathrm{O}$, $\mathrm{THD}_{\mathrm{I}_{3} _ \text {_ }}$ (the numerical value in register) The real physical value is $T H D_{I_{3} \mathrm{O}}=T H D_{\mathrm{I}_{3} \mathrm{O}_{\mathrm{r}}} / 10000 \times 100 \%$		R	$\begin{array}{c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
THD ${ }_{\text {I3_E }}$	0237h	0~10000	Total Even Harmonic Distortion of $\mathrm{I}_{3 \mathrm{E}}$, $\mathrm{THD}_{\mathrm{I}_{3} \mathrm{E} _r}$ (the numerical value in register) The real physical value is $\mathrm{THD}_{\mathrm{I}_{3} \mathrm{E}}=\mathrm{THD}_{\mathrm{I}_{3} \mathrm{Er} / 10000 \times 100 \% ~}^{\text {r }}$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$
$\mathrm{KF}_{\mathrm{I}_{3}}$	0238h	0~65535	K factor of $\mathrm{I}_{3}, \mathrm{KF}_{\mathrm{I}_{3} _ \text {(the numerical value in }}$ register) The real physical value is $K F_{I_{3}}=K F_{I_{3} r} / 10$		R	$\begin{array}{\|c\|} \hline \text { CPM } \\ -52 \\ \text { only } \end{array}$

Max/Min Statistics Value with Time
Stamps

Name	Address	Range	Explain	Initial	Write/Read	Note	
$\mathbf{S}_{\text {md_max }}$	02A9h	0~65535	$S_{\text {md max }}$ (Maximum Demand of Apparent Power)		R	$\begin{gathered} C P M \\ -52 \end{gathered}$	
Year	02AAh	2000~2099	Time Stamp of $\mathrm{S}_{\text {md_max }}$		R	only	
Month	02ABh	1~12			R		
Day	02ACh	1~31			R		
Hour	02ADh	0~23			R		
Minute	02AEh	0~59			R		
Second	02AFh	0~59			R		
V_{1} min	02B0h	0~65535	V_{1} min (Minimum value record of V_{1})		R	$\begin{aligned} & \text { CPM } \\ & -52 \\ & -52 \\ & \text { only } \end{aligned}$	
V_{2} min	02B1h	0~65535	V_{2} min (Minimum value record of V_{2})		R		
$V_{3 \text { min }}$	02B2h	0~65535	$\mathrm{V}_{3 \text { min }}$ (Minimum value record of V_{3})		R		
V_{12} min	02B3h	0~65535	$\mathrm{V}_{12 \text { min }}$ (Minimum value record of V_{12})		R		
$\mathrm{V}_{23 \text { min }}$	02B4h	0~65535	$\mathrm{V}_{23 \text { min }}$ (Minimum value record of V_{23})		R		
V_{31} min	02B5h	0~65535	V_{31} min (Minimum value record of V_{31})		R		
$\mathrm{I}_{1} \mathrm{~min}$	02B6h	0~65535	$\mathrm{I}_{1} \min$ (Minimum value record of I_{1})		R		
$\mathrm{I}_{2 \mathrm{~min}}$	02B7h	0~65535	$\mathrm{I}_{2 \text { min }}$ (Minimum value record of I_{2})		R		
$\mathrm{I}_{3 \mathrm{~min}}$	02B8h	0~65535	I_{3} min (Minimum value record of I_{3})		R		
$\mathrm{P}_{\text {min }}$	02B9h	-32768~32767	$P_{\text {min }}$ (Minimum value record of total active power)		R		
$\mathbf{Q}_{\text {min }}$	02BAh	-32768~32767	$\mathrm{Q}_{\text {min }}$ (Minimum value record of total re-active power)		R		
$\mathbf{S}_{\text {min }}$	02BBh	0~65535	$\mathrm{S}_{\text {min }}$ (Minimum value record of total apparent power)		R		
$\mathrm{PF}_{\text {min }}$	02BCh	-1000~1000	$\mathrm{PF}_{\text {min }}$ (Minimum value record of average power factor)		R		
$F_{\text {min }}$	02BDh	0~7000	$\mathrm{F}_{\text {min }}$ (Minimum value record of system frequency)		R		
Pmd_min	02BEh	-32768~32767	Pmd_min (Minimum Demand of Active Power)		R		
Qmd_min	02BFh	-32768~32767	Qmd_min (Minimum Demand of Reactive Power)		R		
Smd_min	02C0h	0~65535	Smd_min (Minimum Demand of Apparent Power)		R		
Power Measurements for primary			Function 03 Read;				
Name	Address	Range	Explain	Initial	\|Write/Read		Note
Frequency	02D0h* (Hi word)$\|$02D1h* (Lo word)	0~7000	Frequency		R		
V_{1}	02D2h* (Hi word)	0~429496729.6V	Phase Voltage V_{1} (primary)		R		
V_{2}	02D4h* (Hi word)	0~429496729.6V	Phase Voltage V_{2} (primary)		R		
V_{3}	02D6h* (Hi word)	0~429496729.6V	Phase Voltage V_{3} (primary)		R		
$\mathbf{V}_{\text {Inavg }}$	02D8h* (Hi word) 02D9h* (Lo word)	0~429496729.6V	Average Phase Voltage $\mathrm{V}_{\text {In }}$ (primary)		R		
V_{12}	02DAh* (Hi word)$\|$02DBh* (Lo word)	0~429496729.6V	Line Voltage V_{12} (primary)		R		

Name	Address	Range	Explain	Initial	Write/Read	Note
V_{23}	$\begin{gathered} \text { 02DCh* } \\ \text { (Hi word) } \end{gathered}$	0~429496729.6V	Line Voltage V_{23} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02DDh* } \\ \text { (Lo word) } \end{array}$					
\mathbf{V}_{31}	$\begin{array}{\|c\|} \hline \text { 02DEh* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~429496729.6V	Line Voltage V_{31} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02DFh* } \\ \text { (Lo word) } \\ \hline \end{array}$					
$\mathbf{V}_{\text {llavg }}$	$\begin{array}{\|c\|} \hline \text { 02E0h* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~429496729.6V	Average Line Voltage $\mathrm{V}_{\text {II }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02E1h* } \\ \text { (Lo word) } \\ \hline \end{array}$					
I_{1}	$\begin{array}{\|c\|} \hline \text { 02E2h* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~4294967.296A	Phase Current I_{1} (primary)		R	
	$\begin{array}{\|c\|} \hline 02 \mathrm{E} 3 h^{*} \\ \text { (Lo word) } \end{array}$					
I_{2}	$\begin{array}{\|c\|} \hline \text { 02E4h* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~4294967.296A	Phase Current I_{2} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02E5h* } \\ \text { (Lo word) } \end{array}$					
I_{3}	02E6h* (Hi word)	0~4294967.296A	Phase Current I_{3} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02E7h* } \\ \text { (Lo word) } \\ \hline \end{array}$					
$\mathrm{I}_{\text {avg }}$	$\begin{array}{\|c\|} \hline \text { 02E8h* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~4294967.296A	Average Phase Current $\mathrm{I}_{\text {avg }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02E9h* } \\ \text { (Lo word) } \end{array}$					
I_{n}	$\begin{array}{\|c\|} \hline \text { 02EAh* } \\ \text { (Hi word) } \end{array}$	0~4294967.296A	Phase Current I_{n} (primary)		R	
	$\begin{array}{\|c\|} \hline 02 E B h^{*} \\ \text { (Lo word) } \end{array}$					
P_{1}	$\begin{array}{\|c\|} \hline 02 E C h * \\ \text { (Hi word) } \end{array}$	$\begin{aligned} & -2147483648 ~ \\ & 2147483648 \mathrm{~W} \end{aligned}$	Phase Active Power P_{1} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02EDh* } \\ \text { (Lo word) } \end{array}$					
P_{2}	$\begin{array}{\|c\|} \hline \text { 02EEh* } \\ \text { (Hi word) } \end{array}$	$\begin{aligned} & \hline-2147483648 ~ \\ & 2147483648 \mathrm{~W} \\ & \hline \end{aligned}$	Phase Active Power P_{2} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02EFh* } \\ \text { (Lo word) } \\ \hline \end{array}$					
P_{3}	$\begin{array}{\|c\|} \hline \text { 02F0h* } \\ \text { (Hi word) } \\ \hline \end{array}$	$\begin{aligned} & \hline-2147483648 \sim \\ & 2147483648 \mathrm{~W} \end{aligned}$	Phase Active Power P_{3} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02F1h* } \\ \text { (Lo word) } \\ \hline \end{array}$					
$\mathrm{P}_{\text {sum }}$	$\begin{array}{\|c\|} \hline 02 \mathrm{~F} 2 h^{*} \\ \text { (Hi word) } \end{array}$	$\begin{aligned} & \hline-2147483648 \sim \\ & 2147483648 \mathrm{~W} \\ & \hline \end{aligned}$	Total Active Power $\mathrm{P}_{\text {sum }}$ (primary)		R	
	$\begin{gathered} \hline 02 \mathrm{~F} 3 h^{*} \\ \text { (Lo word) } \end{gathered}$					
Q_{1}	$\begin{gathered} \hline \text { 02F4h* } \\ \text { (Hi word) } \end{gathered}$	$\begin{gathered} \hline-2147483648 \sim \\ 2147483648 \mathrm{Var} \\ \hline \end{gathered}$	Phase Re-active Power Q_{1} (primary)		R	
	$\begin{array}{\|c\|} \hline 02 \mathrm{~F} 5 \mathrm{~h}^{*} \\ \text { (Lo } \mathrm{L} \text {) } \end{array}$					
Q_{2}	02F6h* (Hi word)	$\begin{gathered} \hline-2147483648 \sim \\ 2147483648 \mathrm{Var} \\ \hline \end{gathered}$	Phase Re-active Power Q_{2} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02F7h* } \\ \text { (Lo word) } \\ \hline \end{array}$					
Q_{3}	02F8h* (Hi word)	$\begin{aligned} & \hline-2147483648 \sim \\ & 2147483648 \mathrm{Var} \end{aligned}$	Phase Re-active Power Q_{3} (primary)		R	
	02F9h* (Lo word)					

Name	Address	Range	Explain	Initial	Write/Read	Note
$Q_{\text {sum }}$	$\begin{array}{\|c} \hline \text { 02FAh* } \\ \text { (Hi word) } \\ \hline \end{array}$	$\begin{gathered} -2147483648 \sim \\ 2147483648 \mathrm{Var} \\ \hline \end{gathered}$	Total Re-active Power $\mathrm{Q}_{\text {Sum }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline 02 \mathrm{FBh} * \\ \text { (Lo word) } \end{array}$					
S_{1}	$\begin{array}{\|c\|} \hline 02 F C h^{*} \\ \text { (Hi word) } \\ \hline \end{array}$	$\begin{gathered} 0 \sim \\ 4294967296 \mathrm{VA} \end{gathered}$	Phase Apparent Power S_{1} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02FDh* } \\ \text { (Lo word) } \end{array}$					
S_{2}	$\begin{gathered} \text { 02FEh* } \\ \text { (Hi word) } \end{gathered}$	$\begin{gathered} 0 \sim \\ 4294967296 \mathrm{VA} \end{gathered}$	Phase Apparent Power S_{2} (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 02FFh* } \\ \text { (Lo word) } \end{array}$					
S_{3}	$\begin{array}{\|c\|} \hline 0300 h^{*} \\ \text { (Hi word) } \end{array}$	$\begin{gathered} \hline 0 \sim \\ 4294967296 \mathrm{VA} \end{gathered}$	Phase Apparent Power S_{3} (primary)		R	
	$\begin{gathered} \hline 0301 h^{*} \\ \text { (Lo word) } \end{gathered}$					
$\mathrm{S}_{\text {sum }}$	0302h* (Hi word)	$\begin{gathered} \hline 0 \sim \\ 4294967296 \mathrm{VA} \end{gathered}$	Total Apparent Power S ${ }_{\text {sum }}$ (primary)		R	
	$\begin{gathered} \hline 0303 \mathrm{~h}^{*} \\ \text { (Lo word) } \end{gathered}$					
PF_{1}	$\begin{gathered} \hline 0304 h^{*} \\ \text { (Hi word) } \end{gathered}$	$\begin{aligned} & \text {-1000.000~ } \\ & \text { 1000.000PF } \end{aligned}$	Phase Power Factor PF_{1} (primary)		R	
	$\begin{array}{\|c\|} \hline 0305 h^{*} \\ \text { (Lo word) } \end{array}$					
PF_{2}	$\begin{array}{\|c\|} \hline \text { 0306h* } \\ \text { (Hi word) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text {-1000.000~ } \\ & \text { 1000.000PF } \end{aligned}$	Phase Power Factor PF_{2} (primary)		R	
	$\begin{array}{\|c\|} \hline 0307 \mathrm{~h}^{*} \\ \text { (Lo word) } \\ \hline \end{array}$					
PF_{3}	0308h* (Hi word)	$\begin{aligned} & \hline \text {-1000.000~ } \\ & \text { 1000.000PF } \end{aligned}$	Phase Power Factor PF_{3} (primary)		R	
	0309h* (Lo word)					
PF	030Ah* (Hi word)	$\begin{aligned} & \text {-1000.000~ } \\ & \text { 1000.000PF } \end{aligned}$	Average Power Factor $\mathrm{PF}_{\text {avg }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 030Bh** } \\ \text { (Lo word) } \end{array}$					
$\mathrm{P}_{\text {md }}$	030Ch* (Hi word)	$\begin{aligned} & \hline-2147483648 ~ \\ & 2147483648 \mathrm{~W} \\ & \hline \end{aligned}$	Maximum Demand of Active Power $P_{\text {md }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 030Dh* } \\ \text { (Lo word) } \end{array}$					
$Q_{\text {md }}$	$\begin{gathered} \text { 030Eh* } \\ \text { (Hi word) } \end{gathered}$	$\begin{gathered} \hline-2147483648 \sim \\ 2147483648 \mathrm{Var} \\ \hline \end{gathered}$	Maximum Demand of Re-active Power $Q_{\text {md }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline \text { 030Fh* } \\ \text { (Lo word) } \end{array}$					
$S_{\text {md }}$	$\begin{array}{\|c\|} \hline \text { 0310h* } \\ \text { (Hi word) } \\ \hline \end{array}$	$\begin{gathered} \hline 0 \sim \\ 4294967296 \mathrm{VA} \\ \hline \end{gathered}$	Maximum Demand of Apparent Power $\mathrm{S}_{\text {md }}$ (primary)		R	
	$\begin{array}{\|c\|} \hline 0311 h^{*} \\ \text { (Lo word) } \\ \hline \end{array}$					
Load Type	$\begin{gathered} 0312 h^{*} \\ \text { (Hi word) } \end{gathered}$	76/67/82	The type of load 76: Inductive Load 67: Capative Load 82: Resistance Load		R	
	$\begin{gathered} \hline 0313 h^{*} \\ \text { (Lo word) } \end{gathered}$					
$\Theta_{\mathrm{V} 1 \text {-V2 }}$	0314h* (Hi word)	0~360.0Deg	Angle of V_{1} and V_{2}		R	
	$\begin{array}{\|c\|} \hline 0315 h^{*} \\ \text { (Lo word) } \end{array}$					
$\Theta_{\mathrm{V} 1-\mathrm{V} 3}$	$0316 h^{*}$ (Hi word)$\|$$0317 h^{*}$ (Lo word)	0~360.0Deg	Angle of V_{1} and V_{3}		R	

Name	Address	Range	Explain	Initial	Write/Read	Note
$\Theta_{\mathrm{V} 1-\mathrm{I} 1}$	$\begin{gathered} 0318 h^{*} \\ \text { (Hi word) } \end{gathered}$	0~360.0Deg	Angle of V_{1} and I_{1}		R	
	$\begin{array}{\|c\|} \hline 0319 h^{*} \\ \text { (Lo word) } \end{array}$					
$\Theta_{\text {V1-I2 }}$	$\begin{array}{\|c\|} \hline 031 A h^{*} \\ \text { (Hi word) } \\ \hline \end{array}$	0~360.0Deg	Angle of V_{1} and I_{2}		R	
	$\begin{array}{\|c\|} \hline \text { 031Bh* } \\ \text { (Lo word) } \end{array}$					
$\Theta_{\mathrm{V} 1-\mathrm{I} 3}$	$\begin{array}{\|c\|} \hline \text { 031Ch* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~360.0Deg	Angle of V_{1} and I_{3}		R	
	$\begin{array}{\|c\|} \hline \text { 031Dh* } \\ \text { (Lo word) } \\ \hline \end{array}$					
$\Theta_{\mathrm{V} 12 \mathrm{~V} 23}$	$\begin{array}{\|c\|} \hline \text { 031Eh* } \\ \text { (Hi word) } \end{array}$	0~360.0Deg	Angle of V_{12} and V_{23}		R	
	$\begin{array}{\|c\|} \hline \text { 031Fh* } \\ \text { (Lo word) } \\ \hline \end{array}$					
$\Theta_{\mathrm{V} 12-\mathrm{I} 1}$	$\begin{array}{\|c\|} \hline \text { 0320h* } \\ \text { (Hi word) } \\ \hline \end{array}$	0~360.0Deg	Angle of V_{12} and I_{1}		R	
	$\begin{array}{\|c\|} \hline 0321 h^{*} \\ \text { (Lo word) } \end{array}$					
$\Theta_{\mathrm{V} 12-\mathrm{I} 3}$	$\begin{array}{\|c\|} \hline 0322 h^{*} \\ \text { (Hi word) } \end{array}$	0~360.0Deg	Angle of V_{12} and I_{3}		R	
	$\begin{array}{\|c\|} \hline 0323 h^{*} \\ \text { (Lo word) } \\ \hline \end{array}$					
Date and Time table			Function 03 Read; Function 16 Presetting			
Name	Address	Range	Explain	Initial	Write/Read	Note
Year	032Ah	2000~2099			R/W	
Month	032Bh	1~12			R/W	
Day	032Ch	1~31			R/W	
Hour	032Dh	0~23			R/W	
Minute	032Eh	0~59			R/W	
Second	032Fh	0~59			R/W	
Alarm Parameter Register Setting			Function 03 Read; Function 16 Presetting			
Name	Address	Range	Explain	Initial	Write/Read	Note
	0330h	0~8	9 condition inequalities enable Registers Bit0~8 corresponding to 1st~9th inequality		R/W	
	0331h	0~255	Time limit Register		R/W	
	0332h		Register associated DO1 with inequalities, Associated DO1 Bit0~8 corresponding to 1st~9th inequality 1: Yes 0: No		R/W	
	0333h		Register associated DO2 with inequalities, Associated DO2 Bit0~8 corresponding to 1st~9th inequality 1: Yes 0: No		R/W	
	0334h	0~34	Register associated 1st inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	0335h	0~1	$\begin{aligned} & \hline \text { Relation symbol selecting register, } \\ & \text { INEQU_sign1 } \\ & 0:<\text { Low limit } \quad 1:>\text { High limit } \\ & \hline \end{aligned}$		R/W	
	0336h	Related with variable	Limit value for 1st inequality, Ref1		R/W	
	0337h	0~34	Register associated 2nd inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	0338h	0~1	Relation symbol selecting register, INEQU_sign2 $0:<$ Low limit $\quad 1:>$ High limit		R/W	

Name	Address	Range	Explain	Initial	Write/Read	Note
	0339h	Related with variable	Limit value for 2nd inequality, Ref2		R/W	
	033Ah	0~34	Register associated 3rd inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	033Bh	0~1	Relation symbol selecting register, INEQU_sign3 $0:<$ Low limit $\quad 1:>$ High limit		R/W	
	033Ch	Related with variable	Limit value for 3rd inequality, Ref3		R/W	
	033Dh	0~34	Register associated 4th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	033Eh	0~1	Relation symbol selecting register, INEQU_sign4 $0:<$ Low limit 1:> High limit		R/W	
	033Fh	Related with variable	Limit value for 4th inequality, Ref4		R/W	
	0340h	0~34	Register associated 5th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	0341h	0~1	Relation symbol selecting register, INEQU_sign5 $0:<$ Low limit 1:> High limit		R/W	
	0342h	Related with variable	Limit value for 5th inequality, Ref5		R/W	
	0343h	0~34	Register associated 5th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	0344h	0~1	Relation symbol selecting register, INEQU_sign6 $0:<$ Low limit \quad 1:> High limit		R/W	
	0345h	Related with variable	Limit value for 6th inequality, Ref6		R/W	
	0346h	0~34	Register associated 7th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	0347h	0~1	Relation symbol selecting register, INEQU_sign7 $0:<$ Low limit 1:> High limit		R/W	
	0348h	Related with variable	Limit value for 7th inequality, Ref7		R/W	
	0349h	0~34	Register associated 7th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	034Ah	0~1	Relation symbol selecting register, INEQU_sign8 $0:<$ Low limit 1:> High limit		R/W	
	034Bh	Related with variable	Limit value for 8th inequality, Ref8		R/W	
	034Ch	0~34	Register associated 7th inequality with one of the 34 variables. Please refer to the table of Parameter		R/W	
	034Dh	0~1	Relation symbol selecting register, INEQU_sign9 $0:<$ Low limit 1:> High limit		R/W	
	034Eh	Related with Parameter	Limit value for 9th inequality, Ref9		R/W	

Alarm Recording			Function 03 Read			
Name	Address	Range		Initial	Write/Read	Note
	0354h		Over limit Status of the 9 inequalities Bit0~8 corresponding to 1st ~ 9 th inequality 0 : No 1: Yes		R	
	0355h	0~34	Parameter Number of the 1st Alarm record		R	
	0356h	-32768~32767	Parameter Value of the 1st Alarm Record		R	
	0357h	2000~2099	Year of 1st Alarm Record		R	
	0358h	1~12	Month of 1st Alarm Record		R	
	0359h	1~31	date of 1st Alarm Record		R	
	035Ah	0~23	Hour of 1st Alarm Record		R	
	035Bh	0~59	Minute of 1st Alarm Record		R	
	035Ch	0~59	Second of 1st Alarm Record		R	
	035Dh	0~34	Parameter Number of the 2nd Alarm record		R	
	035Eh	-32768~32767	Parameter Value of the 2nd Alarm Record		R	
	035Fh	2000~2099	Year of 2nd Alarm Record		R	
	0360h	1~12	Month of 2nd Alarm Record		R	
	0361h	1~31	date of 2nd Alarm Record		R	
	0362h	0~23	Hour of 2nd Alarm Record		R	
	0363h	0~59	Minute of 2nd Alarm Record		R	
	0364h	0~59	Second of 2nd Alarm Record		R	
	0365h	0~34	Parameter Number of the 3rd Alarm record		R	
	0366h	-32768~32767	Parameter Value of the 3rd Alarm Record		R	
	0367h	2000~2099	Year of 3rd Alarm Record		R	
	0368h	1~12	Month of 3rd Alarm Record		R	
	0369h	1~31	date of 3rd Alarm Record		R	
	036Ah	0~23	Hour of 3rd Alarm Record		R	
	036Bh	0~59	Minute of 3rd Alarm Record		R	
	036Ch	0~59	Second of 3rd Alarm Record		R	
	036Dh	0~34	Parameter Number of the 4th Alarm record		R	
	036Eh	-32768~32767	Parameter Value of the 4th Alarm Record		R	
	036Fh	2000~2099	Year of 4th Alarm Record		R	
	0370h	1~12	Month of 4th Alarm Record		R	
	0371h	1~31	date of 4th Alarm Record		R	
	0372h	0~23	Hour of 4th Alarm Record		R	
	0373h	0~59	Minute of 4th Alarm Record		R	
	0374h	0~59	Second of 4th Alarm Record		R	
	0375h	0~34	Parameter Number of the 5th Alarm record		R	
	0376h	-32768~32767	Parameter Value of the 5th Alarm Record		R	
	0377h	2000~2099	Year of 5th Alarm Record		R	
	0378h	1~12	Month of 5th Alarm Record		R	
	0379h	1~31	date of 5th Alarm Record		R	
	037Ah	0~23	Hour of 5th Alarm Record		R	
	037Bh	0~59	Minute of 5th Alarm Record		R	
	037Ch	0~59	Second of 5th Alarm Record		R	
	037Dh	0~34	Parameter Number of the 6th Alarm record		R	
	037Eh	-32768~32767	Parameter Value of the 6th Alarm Record		R	
	037Fh	2000~2099	Year of 6th Alarm Record		R	
	0380h	1~12	Month of 6th Alarm Record		R	
	0381h	1~31	date of 6th Alarm Record		R	
	0382h	0~23	Hour of 6th Alarm Record		R	
	0383h	0~59	Minute of 6th Alarm Record		R	
	0384h	0~59	Second of 6th Alarm Record		R	
	0385h	0~34	Parameter Number of the 7th Alarm record		R	
	0386h	-32768~32767	Parameter Value of the 7th Alarm Record		R	
	0387h	2000~2099	Year of 7th Alarm Record		R	
	0388h	1~12	Month of 7th Alarm Record		R	
	0389h	1~31	date of 7th Alarm Record		R	
	038Ah	0~23	Hour of 7th Alarm Record		R	
	038Bh	0~59	Minute of 7th Alarm Record		R	
	038Ch	0~59	Second of 7th Alarm Record		R	

Name	Address	Range	Explain	Initial	Write/Read	Note
	038Dh	0~34	Parameter Number of the 8th Alarm record		R	
	038Eh	-32768~32767	Parameter Value of the 8th Alarm Record		R	
	038Fh	2000~2099	Year of 8th Alarm Record		R	
	0390h	1~12	Month of 8th Alarm Record		R	
	0391h	1~31	date of 8th Alarm Record		R	
	0392h	0~23	Hour of 8th Alarm Record		R	
	0393h	0~59	Minute of 8th Alarm Record		R	
	0394h	0~59	Second of 8th Alarm Record		R	
Name	Address	Range	Explain	Initial	Write/Read	Note
	0395h	0~34	Parameter Number of the 9th Alarm record		R	
	0396h	-32768~32767	Parameter Value of the 9th Alarm Record		R	
	0397h	2000~2099	Year of 9th Alarm Record		R	
	0398h	1~12	Month of 9th Alarm Record		R	
	0399h	1~31	date of 9th Alarm Record		R	
	039Ah	0~23	Hour of 9th Alarm Record		R	
	039Bh	0~59	Minute of 9th Alarm Record		R	
	039Ch	0~59	Second of 9th Alarm Record		R	
					R	
Phase angle recording Function 03 Read						
The phase differences between voltage or Current and $\mathrm{U}_{1}\left(\right.$ or $\left.\mathrm{U}_{12}\right)$ are recorded, The phase differences are used to tell the phase sequence						

Name	Address	Range	Explain	Initial	Write/Read	Note
	039Dh	0~3600	Phase difference $\mathrm{V}_{1} / \mathrm{V}_{2}$ (3P4W), Phase angle $\theta_{\mathrm{v} 1 _ \text {v2_r }}$ (the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{v}_{1} _\mathrm{v}_{2}}=\theta_{\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{r}} / 10$ (Degree)		R	
	039Eh	0~3600	Phase difference $V_{1} / V_{3}(3 P 4 W)$, Phase angle $\theta_{\mathrm{v} 1 _ \text {v3_r }}$ (the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{v}_{1} \mathrm{v}_{3}}=\theta_{\mathrm{v}_{1} \mathrm{~V}_{3} \mathrm{r}} / 10$ (Degree)		R	
	039Fh	0~3600	Phase difference $\mathrm{V}_{1} / \mathrm{I}_{1}$ (3P4W), Phase angle $\theta_{\text {v1_I1_r }}($ the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{V}_{1} \mathrm{I}_{1}}=\theta_{\mathrm{V}_{1} \mathrm{I}_{1} \mathrm{r}} / 10$ (Degree)		R	
	03A0h	0~3600	Phase difference $\mathrm{V}_{1} / \mathrm{I}_{2}(3 \mathrm{P} 4 \mathrm{~W})$, Phase angle $\theta_{\mathrm{V} 1 _\mathrm{I}_{2} \text { - }}$ (the numerical value in register) The real physical value is 		R	
	03A1h	0~3600	Phase difference $\mathrm{V}_{1} / \mathrm{I}_{3}(3 \mathrm{P} 4 \mathrm{~W})$, Phase angle $\theta_{\mathrm{V} 1 _1 I_{3} r}($ the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{V}_{1} \mathrm{I}_{3}}=\theta_{\mathrm{V}_{1} \mathrm{I}_{3} \mathrm{r}} / 10$ (Degree)		R	
	03A2h	0~3600	Phase difference $\mathrm{V}_{12} / \mathrm{V}_{23}$ (3P3W), Phase angle $\theta_{\text {v12_v23_r }}$ (the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{V} 12 \mathrm{~V} 23}=\theta_{\mathrm{V} 12} \mathrm{v} 23 \mathrm{r} / 10$ (Degree)		R	
	03A3h	0~3600	Phase difference $\mathrm{V}_{12} / \mathrm{I}_{1}$ (3P3W) , Phase angle $\theta_{\mathrm{V} 12 \text { I1_r }}$ (the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{V} 12 \mathrm{I}_{1}}=\boldsymbol{\theta}_{\mathrm{V} 12 \mathrm{I}_{1} \mathrm{r}} / 10$ (Degree)		R	
	03A4h	0~3600	Phase difference $\mathrm{V}_{12} / \mathrm{I}_{3}(3 \mathrm{P} 3 \mathrm{~W})$, Phase angle $\theta_{\mathrm{V} 12 \text { _I3_r }}$ (the numerical value in register) The real physical value is Phase angle $\theta_{\mathrm{V} 12 \mathrm{I} 3}=\theta_{\mathrm{V} 12 \mathrm{I} 3 \mathrm{r}} / 10$ (Degree)		R	

