CS3-PR PROCESS Indicator [24x48]

■DESCRIPTION

CS3-PR Process Indicator has been designed in miniature size(24 x 48mm), and provide high accuracy 0.04% measurement, display and communication of DC signal $0 \sim 10 \mathrm{~V}$ and $4(0) \sim 20 \mathrm{~mA}$.
They are also to build 2 Relay outputs, 1 External Control Input, 1 Analogue output or 1 RS485(Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or communication.

■FEATURE

- Measuring linear signal 0~10V / 0(4)~20mA(with Square Root function) in one controller
- 2 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions, or to be a remote control.
- Analogue output or RS 485 communication port available in option
- 1 external control input can be programmed to be Relative PV(Tare) / PV Hold / DI (remote monitoring) / Reset for Maximum or Minimum Hold / Reset for Relay Energized Latch....
- CE Approved

ORDERING INFORMATION

Excitation Supply DC24V in build for 2 wire transmitters

TECHNICAL SPECIFICATION

Input

Input Range		Input Impedance	Input Range		Input Impedance
Voltage	$0 \sim 10 \mathrm{~V}$	$\geq 1 \mathrm{M}$ ohm	Current	$4(0) \sim 20 \mathrm{~mA}$	250 ohm

\rightarrow The Meter can be $0 \sim 10 \mathrm{~V}$ and $0 \sim 20 \mathrm{~mA}$ in one unit, according to connection \#11 or \#12

Calibration:
A/D converter:
Accuracy: Sampling rate:
Response time: Input type:

Input range:

Digital calibration by front key
16 bits resolution
$\leq \pm 0.04 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$;
15 cycles/sec
$\leq 100 \mathrm{~m}$-sec.(when the AvG = "1") in standard
$0 \sim 10 \mathrm{~V} / 0 \sim 5 \mathrm{~V} / 1 \sim 5 \mathrm{~V} / 0-10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$
programmable for coding AV(option)
Input High and Low programmable
R, . 1 : Settable range: $0.00 \sim 100.00 \%$ of input range
R ,Lo: Settable range: $0.00 \sim 100.00 \%$ of input range

Display \& Functions

LED:

Display range:
Scaling function:

Decimal point:
Square root function:
Over range indication:
Under range indication: Max / Mini recording:
Display functions:
Front key functions:
Low cut:
Digital fine adjust:

Numeric: 5 digits, $0.4^{\prime \prime}(10.0 \mathrm{~mm}) \mathrm{H}$ red high-brightness LED
Relay output indication: 2 square red LED
RS 485 communication: 1 square orange LED E.C.I. function indication: 1 square green LED -19999~29999;
L o.SC: Low Scale; Settable range: -19999~+29999
H.SC: High Scale; Settable range: -19999~+29999

Programmable from $0 / 0.0 / 0.00 / 0.000 / 0.0000$ Selectable for differential pressure transducers ouFL , when input is over 20% of input range Hi - ouFL, when input is under - 20% of input range Lo Maximum and Minimum value storage during power on. PV / Max(Mini) Hold / RS 485 Programmable Up key can be set to be a function as ECl . Settable range: -19999~29999 counts Pu.?ro:Settable range: -19999~+29999 $P_{u .5 P_{n}}$: Settable range: -19999~+29999

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) ~ 10 times
Digital filter:	Settable range: 0 (None)/1~99 times

Control Functions(option)

Set-points:	Two set-points
Control relay:	Two relays, FORM-C, 1A/230Vac, 3A/115V

Relay energized mode: Energized levels compare with set-points:
Hi / Lo / Hi.HLd / Lo.HLd; programmable
DO function: Energized by RS485 command of master.
Energizing functions: Start delay / Energized \& De-energized delay / Hysteresis / Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0~9(Minutes):59.9(Second) Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) Hysteresis: $0 \sim 5000$ counts

External Control Inputs(ECI)

Input mode:	1 ECI points, Contact or open collect input, Level trigger
Functions:	Relative PV (Tare) / PV Hold / Reset for Max or Mini. Hold /
	DI / Reset for Relay Energized latch

Debouncing time: Settable range $5 \sim 255 \times(8 \mathrm{~m}$ seconds)
Analogue output(option)

Accuracy:	$\leq \pm 0.1 \%$ of F.S.; 16 bits DA converter
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{~m}-\mathrm{sec}$. (10~90\% of input)
Isolation:	AC 1.5 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Current: 0~10mA / 0~20mA / 4~20mA programmable
Output capability:	Voltage: 0~10V: $\geq 1000 \Omega$;
	Current: 4(0)~20mA: $\leq 600 \Omega$ max

Functions:
Digital fine adjust:

Ro.HS (output range high): Settable range: -19999~29999 Ro.L 5 (output range Low): Settable range: -19999~29999 Ro.L int (output High Limit): 0.00~110.00\% of output High Ro.? r o: Settable range: -38011~+27524
Ro.SPn: Settable range: -38011~+27524

RS 485 Communication(option)

Protocol:
Baud rate:
Data bits:
Parity:
Address:
Remote display:
Distance:
Terminate resistor:
Electrical Safety
Dielectric strength: Insulation resistance:
Isolation:
EMC:
Safety(LVD)
Environmental
Operating temp.:
Operating humidity:
Temp. coefficient:
Storage temp.:
Enclosure:
Mechanical
Dimensions:
Panel cutout:
Case material:
Mounting:
Terminal block:

Weight:
Power
Power supply:
Excitation supply:
Power consumption:
Back up memory:

Modbus RTU mode
1200/2400/4800/9600/19200/38400 programmable
8 bits
Even, odd or none (with 1 or 2 stop bit) programmable
1 ~ 255 programmable
to show the value from RS485 command of master 1200M
150Ω at last unit.

AC 1.5 KV for 1 min, Between Power / Input / Output / Case $\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output Between Power / Input / Relay / Analogue / RS485 / E.C.I.
EN 55011:2002; EN 61326:2003
EN 61010-1:2001
$0 \sim 60^{\circ} \mathrm{C}$
20~95 \%RH, Non-condensing
$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
$-10 \sim 70{ }^{\circ} \mathrm{C}$
Front panel: IEC 529 (IP52); Housing: IP20
$48 \mathrm{~mm}(\mathrm{~W}) \times 24 \mathrm{~mm}(\mathrm{H}) \times 102 \mathrm{~mm}(\mathrm{D})$
$44 \mathrm{~mm}(\mathrm{~W}) \times 22.5 \mathrm{~mm}(\mathrm{H})$
ABS fire-resistance (UL 94V-0)
Panel flush mounting
Plastic NYLON 66 (UL 94V-0)
5A 300Vac, M2.0, 0.5~1.3mm²(22~16AWG)
About 110g

AC 85~264V, DC 100~300V, DC 20~56V
DC24V/40mA maximum in standard
4.5VA maximum

By EEPROM

FRONT PANEL

■DIMENSIONS

INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

■CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.
Power Supply

2 wire Transmitter connection

0~10V (3 Wire) Transmitter

4(0) ~20mA Input connection

RS485 Communication Port

FUNCTION DESCRIPTION

Input \& Scaling Functions

Dual input types: (Option Code: AV)

Voltage and Current Type are in one unit available in option. If the customer specify the input coding for AV , the meter will be calibrated for $0 \sim 10 \mathrm{~V}$ and $0 \sim 20 \mathrm{~mA}$ in factory. The user can use in $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ by difference terminals connection (\#11 \& \#13 for 0~10V or \#12 \& \#13 for 4(0) ~ 20mA) and programming in [8,tyP] of [inPUt [GrouP].
Input range: Analogue input High and Low programmable
The meter has to be specified and fixed according to ordering code (ex. $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$) in factory. If the meter has to install in difference range of input, the meter can be set in function $\mathrm{FiLO}_{\mathrm{L}}$ and $\mathrm{K}_{\mathrm{L}} \mathrm{H}_{1}$ of input group to meet the input signal.
For example: The meter is $0 \sim 10 \mathrm{Vdc}$ input, and the signal from sensor is $2 \sim 10 \mathrm{Vdc}$. Please get into [inPUt Group] to set $\mathrm{A}_{\mathrm{iLo}}$ (Analogue input Low) to be $20.00 \%(10 \mathrm{~V} \times 20.00 \%=2 \mathrm{~V})$, then the meter has been changed the input range to $2 \sim 10 \mathrm{Vdc}$ and the all relative parameters will work base on $2 \sim 10 \mathrm{~V}$. The meter doesn't need re-calibration after change the A iLo and R.H.

*The setting may course display lower resolution. Please set lower resolution when the input signal has been high compressed.
Scaling function:
Setting the [Lo.S[] (Low scale) and [H.SC] (High scale) in [inPUt [rould to relative input signal. Reverse scaling will be done too.
Please refer to the figure as below,

*Too narrow scale may course display lower resolution.

Display \& Functions

Max / Mini recording: The meter wills storage the maximum and minimum value in [user level] during power on in order to review drifting of PV.
Display functions: $\quad \mathrm{PV} / \mathrm{Max}$ (Mini) Hold/RS 485 programmable in [dSPL 4] function of [inPUt [GroUP]
Present Value P_{u} : The display will show the value that Relative to Input signal. Maximum Hold $\overline{\mathrm{n} R} 4 \mathrm{Hd}$ / Minimum Hold $\overline{\mathrm{n}}$ in. Hd :

The meter will keep display in maximum(minimum) value during power on, until manual reset by front key in [User level], rear terminal is close [External Control Input(ECI)] or press front down or up key to reset (according to setting, please refer to the function of the ECI Group)

Remote Display by RS485 command -5485:
The meter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.

Other functions :

Square root function: functions that set in [E[, Group]. Please refer to explain of ECI functions.
Squareroot function: The function can be set no or YES in[inPUL GroUP] to measure the signal from differential pressure flow-meter.
The formula $=\sqrt{ }(\mathrm{Pv} / \mathrm{HS}) \times \mathrm{HS}$
Settable range from -19999~+99999 counts.
The users can set the value range.

1. If set the positive value (X1) here to display "0" which it expressed to be low-cut the PV between "+X1 (plus)" \&
"-X1(minus)" /absolute value
PV < I Setting value (X1) I, the display will be shown 0
EX: Low Cut is set for 0.50 . If the display is from
$-0.50 \sim+0.50$, that will be 0 .

2. If set the negative value (X2) here to display "X2" which it expressed to be low-cut the PV that it's under the X2 setting value;
PV < Setting value(X2), the display will be shown X2.
EX: Low Cut is set for -0.01 . If the display is <-0.01, and all the display will be -0.01 .

Digital fine adjust:
Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.
Especially, the $\left[P u P_{r o} \quad\right.$] \& $\left[P_{u} .5 P_{n}\right]$ are not only in zero \& span of PV, but also any lower point for [Pu.? will be linearization for full scale.
The adjustment can be clear in function [P.5.CL r]

Reading Stable Function

Average display:

Jittery Display caused by the noise or unstable signal. User can set the times to average the readings, and to get smoothly display.
The meter's sampling is $15 \mathrm{cycle/sec}$. If the [Ruf](Average) set to be 3 to express the display update with 5 times $/ \mathrm{sec}$. The meter will calculate the sampling 1-3 and update the display value. At meantime, the sampling 4-6 will be processed to calculate.

Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average:

Jittery Display caused by the reasons as like as noise or unstable signal. User can set the times to average the readings, and get smoothly display.
The meter's sampling is $15 \mathrm{cycle/sec}$. If the [$\overline{\mathrm{n} R} \boldsymbol{R} \mathrm{U}$](Moving Average) set to be 3 expressed the display update with 15 times $/ \mathrm{sec}$.,
In the first updated display value will be same as average function. In the next updated display value, the function will get the new fourth sample (sample 4) then throw away the first sample (sample 1) that the newest 3 samples(sample $2,3,4$) will be calculated for the updated display value.

Remark: The higher moving average setting wouldn't cause the response time of Relay and Analogue output slower after first 3 samples.
Digital Filter: \quad The digital filter can reduce the magnetic noise in field.
The digital filter can reduce the influence of spark noise caused by magnetic of coil.
If the values of samples are over digital filter band (fix in firmware and about 5% of stable reading) 3 times (Digital Filter set to be 3) continuously, the meter will admit the samples and update the new reading. Otherwise, it will be as treat as a noise and skip the samples.

Control Functions(option)

In all CS series, the relay functions are not only for alarm or control, but also for I/O interface as like as I/O of PLC. They can be programmed to be $\mathrm{Hi}($ Latch) / Lo(Latch) energized to compare with set-point or DO to be energized by RS485 command directly.
Relay energized mode: Hi/ Lo/ Hi.HLd/Lo.HLd / DO programmable
Hi HI(Fig.1-(1)): Relay will energize when PV $>$ Set-Point
Lo Lo (Fig.1-(2): Relay will energize when PV < Set-Point

Hi.HLd H .HLD (Lo.HLd $\mathrm{O} . \mathrm{HL}$]) :
The relay energized with latched function is for electrical safety and human protection.
For example, a current meter relay installed for the over current alarm of motor. Generally, over current of motor caused by over load, mechanical dead lock, aging of insulation and so on.
Above cases will alarm in the meter, if the user doesn't figure out the real reason and re-start the motor. It may damage the motor. The functions of Hi.HLd \& Lo.HLd are designed must be manual reset the alarm after checking out and solving the issue. It's very important idea for electrical safety and human protection.

As the PV Higher (or lower) than set-point, the relay will be energized to latch except manual reset by from key in [user level] or $[E[\quad, \quad](E C I)$ set to be - -y. $5 t$ is closed.

DO function \qquad :The function has been designed not only a meter but also an I/O interface. In the case of motor control cabinet can't get the remote function. It's very easily to get the ON/OFF status of switch from CS2 series with RS485 function. If the [$\left.r Y_{-} . \bar{n} d\right]$ had been set $\quad \mathrm{do}$, the relay will be energized by RS485 command directly, but no longer to compare with set-point.

Start delay band and Start delay time:

The functions have Been designed for,

- To avoid starting current of inductive motor (6 times of rated current) with alarm.
- If the ry_.id relay energized mode had been set to be Lo(Lo) or o.HLd (Lo \& latch). As the meter is power on and no input to display the " 0 " caused the relay will be energized. User can set a band and delay time to inhibit the energized of relay.
Start band ry.5b(Fig.2-(1): Settable range from 0~9999 Counts
Start delay time ry.5d (Fig.2-(2): Settable range from $0.0(\mathrm{~s}) \sim 9(\mathrm{~m}) 59.9(\mathrm{~s})$;

Hysteresis -Y_HY (Fig.3-(1): Settable range from 0~9999 Counts
As the display value is swing near by the set point to cause the relay on and off frequently. The function is to avoid the relay on and off frequently such as compressor.......etc.,
Relay energized delay FY _.rd (Fig.3-(2): Settable range from $0.0(\mathrm{~s}) \sim 9(\mathrm{~m}) 59.9(\mathrm{~s})$; The function is to avoid the miss action caused by noise. Sometime, the display value will swing caused by spark of contactor...etc.. User can set a period to delay the relay energized.
Relay de-energized delay -Y_Fd (Fig.3-3): Settable range from $0.0(\mathrm{~s}) \sim 9(\mathrm{~m}) 59.9(\mathrm{~s})$;

External Control Inputs(ECI)

The three external control inputs are individually programmable to perform specific meter control or display functions. All E.C.I. have been designed in level trigger actions. Please pay attention, the ECI1 or ECl2 input will be disable while UP Key has been set to be " YE5".
Functions: \quad Relative PV / PV Hold / Reset Max or Mini. Hold / DI / Reset for Relay Energized latch programmable.
Relative PV FELPU or Tare:
The [E[1.$]$ can be set to be FEL.PU function. When the E.C.I. is closed, the reading will show the differential value.

PV Hold PuHLD: The [E[, !] can be set to be Pu.HLd (PV Hold) function. The display will be hold when the ECl is closed, until the ECl is to be open. Please refer to the below figures,

Reset for Maximum or Minimum Hold $\bar{n} . r 5 t$:
When the [dSPLY] function in [inPUE GroUP] selected KiRh. Hd or or n nHd , the display will show Maximum or Minimum value.
The [E[:.] function can be set to be $\overline{\mathrm{n}} \mathrm{r}$ St function to reset the maximum and minimum value in [User Level] by terminals of ECI (close). Please refer to the figure as below.

DI di:
The E.C.I can be set to be d_{1} function, when the meter building in RS485 port. It is easier to get remote monitoring a switch status through the meter as like as DI of PLC.

Reset for Relay Energized Latch FY.r5t:

If the relay energized mode has been set to be H.HL.d (Energized latch), and the [E[.]] can be set to be - Y.r 5t (Reset the Relay energized latch). When the PV meets the condition of relay energizing, the relay will be energized and latch until the ECl is to be closed.
$\mathrm{Hi}($ Lo $)$ Energized Latch \& Reset

Debouncing time:

The function is for avoiding noise signal to into the meter. And The basic period is 8 mseconds. It means you set the number that has to multiple 8 m -seconds.
For example:
[dEbnc]]set to be 5, it means $5 \times 8 \mathrm{mseconds}=40 \mathrm{mseconds}$

Analogue output(option)

Please specify the output type either an $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point
Output range: \quad Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: 0~10mA / 0~20mA / 4~20mA programmable Functions: Output High / Low scale, output limit, fine adjustment Output range high [$\mathrm{Ro}_{\mathrm{ol}} \mathrm{HS}$]:

To setting the Display value High to versus output range High(as like as 20 mA in 4~20)
Output range low [RoL. S]:
To setting the Display value Low to versus output range Low(as like as 4mA in 4~20)

The range between [Ro.HS] and [Ro.LS] should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.
Output High Limit [Rollīt]:
$0.00 \sim 110.00 \%$ of output High User can set the high limit of output to avoid a damage of receiver or protection system.

Set Scaling: [Lo.S[]: 0.00, [H .SC]: 199.99
Output: [Rol. 5]: 50.00(Display Value Low),

Fine zero \& span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key(up or down key) of meter to adjust and
Zero adjust [Ro.?ro]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524;
Span adjust [Ro.SPn]: Fine Span Adjustment for Analog Output; Settable range: -38011~27524

RS 485 communication(option)

CS2 series supports Modbus RTU mode protocol to be used as Remote Terminal Unit (RTU) for monitoring and controlling in a SCADA (Supervisor Control And Data Acquisition) system. The baud rate can be up to 38400 bps. It's not only can be read the measured value and DI (external control inputs) status but also controls the relays output (DO) by RS485 communication ports.

Remote Display:

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.
When the [dSPL C] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data(number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.

System calibration by front key. The process of calibration, please refer to the operating manual

ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.
SELF-DIAGNOSIS AND ERROR CODE:

DISPLAY	DESCRIPTION	REMARK
OuFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)
-ouFl	Display is negative-overflow (Signal is under display range)	(Please check the input signal)
ouFL	ADC is positive-overflow (Signal is higher than input range high 20\%)	(Please check the input signal)
-ouFL	ADC is negative-overflow (Signal is lower than input range low -20%)	(Please check the input signal)
$E E P \Rightarrow$ FR L	EEPROM occurs error	(Please send back to manufactory for repaired)
A, [.п $¢ P_{\text {U }}$	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)
R , L $¢$ FR L	Calibrating Input Signal error	(Please check Calibrating Input Signal)
RoL.nE $¢ \mathrm{Pu}^{\text {c }}$	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)
RoL \Rightarrow FR L	Calibrating Output Signal error	(Please check Calibrating Output Signal)

■FRONT PANEL:

Numeric Screens

0.4 " $(10.0 \mathrm{~mm})$ red high-brightness LED for $42 / 3$ digital present value.

- I/O Status Indication
- Relay Energized: 2 square red LED

RL1 display when Relay 1 energized;
RL2 display when Relay 2 energized;

- External Control Input Energized: 1 square green LED

ECl1 display when E.C.I. 1 close(dry contact)

- RS485 Communication: 1 square orange LED

COM will flash when the meter is receive or send data, and COM flash quickly means the data transient quicker.

- Operating Key: 4 keys for Dinter(Function) / Shift(Escape) / Zup key / DDown key

	Setting Status	Function Index		
SUn key	Increase number	Go back to previous function index		
Down key	Decrease number	Go to next function index		
Enter/Fun key	Shift the setting position	So back to this function Seting Confirmed and index \& abort the setting		
save to EEProm			\quad	From the function index
:---				
to get into setting status				

- Pass Word: Settable range:0000~9999;

User has to key in the right pass word so that get into [Programming Level]. Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with our service window.
Function Lock: There are 4 levels programmable.

- None nonE: no lock all.
- User Level USEr: User Level lock. User can get into User Level for checking but setting.
- Programming Level En[: Programming level lock. User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
- Front Key Function

The \square Key can be set to be the same function as the setting of ECI1. Ex. The ECI1 set to be Pu.HLd and the function E.1=UP set to be UES in [E[, Group]. When user presses BKey, the PV will hold as like as ECI1 close.

- If the front key function has been set, the terminal input for ECI will be disabling.

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Plesae refer to operating manual for detail description

